237 research outputs found

    Nonlinear electron-phonon coupling in doped manganites

    Full text link
    We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-metal transition in the doped manganite Pr0.5_{0.5}Ca0.5_{0.5}MnO3_3 after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drive these dynamics, highlighting a new avenue of nonlinear phonon control

    Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5

    Full text link
    THz-frequency optical pulses can resonantly drive selected vibrational modes in solids and deform their crystal structure. In complex oxides, this method has been used to melt electronic orders, drive insulator to metal transitions or induce superconductivity. Strikingly, coherent interlayer transport strongly reminiscent of superconductivity can be transiently induced up to room temperature in YBa2Cu3O6+x. By combining femtosecond X-ray diffraction and ab initio density functional theory calculations, we determine here the crystal structure of this exotic non-equilibrium state. We find that nonlinear lattice excitation in normal-state YBa2Cu3O6+x at 100 K causes a staggered dilation/contraction of the Cu-O2 intra/inter- bilayer distances, accompanied by anisotropic changes in the in-plane O-Cu-O bond buckling. Density functional theory calculations indicate that these motions cause dramatic changes in the electronic structure. Amongst these, the enhancement in the dx2-y2 character of the in-plane electronic structure is likely to favor superconductivity.Comment: 28 pages, including Supplemen
    • …
    corecore