188 research outputs found

    Nonlinear electron-phonon coupling in doped manganites

    Full text link
    We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-metal transition in the doped manganite Pr0.5_{0.5}Ca0.5_{0.5}MnO3_3 after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drive these dynamics, highlighting a new avenue of nonlinear phonon control

    Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5

    Full text link
    THz-frequency optical pulses can resonantly drive selected vibrational modes in solids and deform their crystal structure. In complex oxides, this method has been used to melt electronic orders, drive insulator to metal transitions or induce superconductivity. Strikingly, coherent interlayer transport strongly reminiscent of superconductivity can be transiently induced up to room temperature in YBa2Cu3O6+x. By combining femtosecond X-ray diffraction and ab initio density functional theory calculations, we determine here the crystal structure of this exotic non-equilibrium state. We find that nonlinear lattice excitation in normal-state YBa2Cu3O6+x at 100 K causes a staggered dilation/contraction of the Cu-O2 intra/inter- bilayer distances, accompanied by anisotropic changes in the in-plane O-Cu-O bond buckling. Density functional theory calculations indicate that these motions cause dramatic changes in the electronic structure. Amongst these, the enhancement in the dx2-y2 character of the in-plane electronic structure is likely to favor superconductivity.Comment: 28 pages, including Supplemen

    Photoinduced suppression of the ferroelectric instability in PbTe

    Full text link
    The interactions between electrons and phonons drive a large array of technologically relevant material properties including ferroelectricity, thermoelectricity, and phase-change behaviour. In the case of many group IV-VI, V, and related materials, these interactions are strong and the materials exist near electronic and structural phase transitions. Their close proximity to phase instability produces a fragile balance among the various properties. The prototypical example is PbTe whose incipient ferroelectric behaviour has been associated with large phonon anharmonicity and thermoelectricity. Experimental measurements on PbTe reveal anomalous lattice dynamics, especially in the soft transverse optical phonon branch. This has been interpreted in terms of both giant anharmonicity and local symmetry breaking due to off-centering of the Pb ions. The observed anomalies have prompted renewed theoretical and computational interest, which has in turn revived focus on the extent that electron-phonon interactions drive lattice instabilities in PbTe and related materials. Here, we use Fourier-transform inelastic x-ray scattering (FT-IXS) to show that photo-injection of free carriers stabilizes the paraelectric state. With support from constrained density functional theory (CDFT) calculations, we find that photoexcitation weakens the long-range forces along the cubic direction tied to resonant bonding and incipient ferroelectricity. This demonstrates the importance of electronic states near the band edges in determining the equilibrium structure.Comment: 9 page, 3 figure
    • …
    corecore