531 research outputs found

    How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Get PDF
    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.Comment: Accepted to Ap

    CO-dark gas and molecular filaments in Milky Way type galaxies

    Get PDF
    We use the moving mesh code AREPO coupled to a time-dependent chemical network to investigate the formation and destruction of molecular gas in simulated spiral galaxies. This allows us to determine the characteristics of the gas that is not traced by CO emission. Our extremely high resolution AREPO simulations allow us to capture the chemical evolution of the disc, without recourse to a parameterised `clumping factor'. We calculate H2 and CO column densities through our simulated disc galaxies, and estimate the CO emission and CO-H2 conversion factor. We find that in conditions akin to those in the local interstellar medium, around 42% of the total molecular mass should be in CO-dark regions, in reasonable agreement with observational estimates. This fraction is almost insensitive to the CO integrated intensity threshold used to discriminate between CO-bright and CO-dark gas, as long as this threshold is less than 10 K km/s. The CO-dark molecular gas primarily resides in extremely long (>100 pc) filaments that are stretched between spiral arms by galactic shear. Only the centres of these filaments are bright in CO, suggesting that filamentary molecular clouds observed in the Milky Way may only be small parts of much larger structures. The CO-dark molecular gas mainly exists in a partially molecular phase which accounts for a significant fraction of the total disc mass budget. The dark gas fraction is higher in simulations with higher ambient UV fields or lower surface densities, implying that external galaxies with these conditions might have a greater proportion of dark gas.Comment: Accepted by MNRA

    On the photodissociation of H2 by the first stars

    Full text link
    The first star formation in the universe is expected to take place within small protogalaxies, in which the gas is cooled by molecular hydrogen. However, if massive stars form within these protogalaxies, they may suppress further star formation by photodissociating the H2. We examine the importance of this effect by estimating the timescale on which significant H2 is destroyed. We show that photodissociation is significant in the least massive protogalaxies, but becomes less so as the protogalactic mass increases. We also examine the effects of photodissociation on dense clumps of gas within the protogalaxy. We find that while collapse will be inhibited in low density clumps, denser ones may survive to form stars.Comment: 13 pages, 10 figures. Minor revisions to match version accepted by MNRA

    The role of cosmic ray pressure in accelerating galactic outflows

    Get PDF
    We study the formation of galactic outflows from supernova explosions (SNe) with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SNe placement and energy feedback, including cosmic rays (CR), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.Comment: 8 pages, 4 figures, accepted for publication in ApJL; movie of simulated gas densities can be found here: http://www.h-its.org/tap-images/galactic-outflows

    Formation and evolution of primordial protostellar systems

    Full text link
    We investigate the formation of the first stars at the end of the cosmic dark ages with a suite of three-dimensional, moving mesh simulations that directly resolve the collapse of the gas beyond the formation of the first protostar at the centre of a dark matter minihalo. The simulations cover more than 25 orders of magnitude in density and have a maximum spatial resolution of 0.05 R_sun, which extends well below the radius of individual protostars and captures their interaction with the surrounding gas. In analogy to previous studies that employed sink particles, we find that the Keplerian disc around the primary protostar fragments into a number of secondary protostars, which is facilitated by H2 collisional dissociation cooling and collision-induced emission. The further evolution of the protostellar system is characterized by strong gravitational torques that transfer angular momentum between the secondary protostars formed in the disc and the surrounding gas. This leads to the migration of about half of the secondary protostars to the centre of the cloud in a free-fall time, where they merge with the primary protostar and enhance its growth to about five times the mass of the second most massive protostar. By the same token, a fraction of the protostars obtain angular momentum from other protostars via N-body interactions and migrate to higher orbits. On average, only every third protostar survives until the end of the simulation. However, the number of protostars present at any given time increases monotonically, suggesting that the system will continue to grow beyond the limited period of time simulated here.Comment: 19 pages, 13 figures, accepted for publication in MNRAS, movies of the simulations may be downloaded at http://www.mpa-garching.mpg.de/~tgrei
    • …
    corecore