840 research outputs found
Particle rearrangements during transitions between local minima of the potential energy landscape of a supercooled Lennard-Jones liquid
The potential energy landscape (PEL) of supercooled binary Lennard-Jones
(BLJ) mixtures exhibits local minima, or inherent structures (IS), which are
organized into meta-basins (MB). We study the particle rearrangements related
to transitions between both successive IS and successive MB for a small 80:20
BLJ system near the mode-coupling temperature T_MCT. The analysis includes the
displacements of individual particles, the localization of the rearrangements
and the relevance of string-like motion. We find that the particle
rearrangements during IS and MB transitions do not change significantly at
T_MCT. Further, it is demonstrated that IS and MB dynamics are spatially
heterogeneous and facilitated by string-like motion. To investigate the
mechanism of string-like motion, we follow the particle rearrangements during
suitable sequences of IS transitions. We find that most strings observed after
a series of transitions do not move coherently during a single transition, but
subunits of different sizes are active at different times. Several findings
suggest that the occurrence of a successful string enables the system to exit a
MB. Moreover, we show that the particle rearrangements during two consecutive
MB transitions are basically uncorrelated. Specifically, different groups of
particles are highly mobile during subsequent MB transitions. Finally, the
relation between the features of the PEL and the relaxation processes in
supercooled liquids is discussed.Comment: 13 pages, 10 figure
Simulation studies of a phenomenological model for elongated virus capsid formation
We study a phenomenological model in which the simulated packing of hard,
attractive spheres on a prolate spheroid surface with convexity constraints
produces structures identical to those of prolate virus capsid structures. Our
simulation approach combines the traditional Monte Carlo method with a modified
method of random sampling on an ellipsoidal surface and a convex hull searching
algorithm. Using this approach we identify the minimum physical requirements
for non-icosahedral, elongated virus capsids, such as two aberrant flock house
virus (FHV) particles and the prolate prohead of bacteriophage , and
discuss the implication of our simulation results in the context of recent
experimental findings. Our predicted structures may also be experimentally
realized by evaporation-driven assembly of colloidal spheres
Are there localized saddles behind the heterogeneous dynamics of supercooled liquids?
We numerically study the interplay between heterogeneous dynamics and
properties of negatively curved regions of the potential energy surface in a
model glassy system. We find that the unstable modes of saddles and
quasi-saddles undergo a localization transition close to the Mode-Coupling
critical temperature. We also find evidence of a positive spatial correlation
between clusters of particles having large displacements in the unstable modes
and dynamical heterogeneities.Comment: 7 pages, 3 figures, submitted to Europhys. Let
Growing spatial correlations of particle displacements in a simulated liquid on cooling toward the glass transition
We define a correlation function that quantifies the spatial correlation of
single-particle displacements in liquids and amorphous materials. We show for
an equilibrium liquid that this function is related to fluctuations in a bulk
dynamical variable. We evaluate this function using computer simulations of an
equilibrium glass-forming liquid, and show that long range spatial correlations
of displacements emerge and grow on cooling toward the mode coupling critical
temperature
Optimal Filling of Shapes
We present filling as a type of spatial subdivision problem similar to
covering and packing. Filling addresses the optimal placement of overlapping
objects lying entirely inside an arbitrary shape so as to cover the most
interior volume. In n-dimensional space, if the objects are polydisperse
n-balls, we show that solutions correspond to sets of maximal n-balls. For
polygons, we provide a heuristic for finding solutions of maximal discs. We
consider the properties of ideal distributions of N discs as N approaches
infinity. We note an analogy with energy landscapes.Comment: 5 page
Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces
Polyhedra and their arrangements have intrigued humankind since the ancient
Greeks and are today important motifs in condensed matter, with application to
many classes of liquids and solids. Yet, little is known about the
thermodynamically stable phases of polyhedrally-shaped building blocks, such as
faceted nanoparticles and colloids. Although hard particles are known to
organize due to entropy alone, and some unusual phases are reported in the
literature, the role of entropic forces in connection with polyhedral shape is
not well understood. Here, we study thermodynamic self-assembly of a family of
truncated tetrahedra and report several atomic crystal isostructures, including
diamond, {\beta}-tin, and high- pressure lithium, as the polyhedron shape
varies from tetrahedral to octahedral. We compare our findings with the densest
packings of the truncated tetrahedron family obtained by numerical compression
and report a new space filling polyhedron, which has been overlooked in
previous searches. Interestingly, the self-assembled structures differ from the
densest packings. We show that the self-assembled crystal structures can be
understood as a tendency for polyhedra to maximize face-to-face alignment,
which can be generalized as directional entropic forces.Comment: Article + supplementary information. 23 pages, 10 figures, 2 table
Heterogeneous slow dynamics in a two dimensional doped classical antiferromagnet
We introduce a lattice model for a classical doped two dimensional
antiferromagnet which has no quenched disorder, yet displays slow dynamics
similar to those observed in supercooled liquids. We calculate two-time spatial
and spin correlations via Monte Carlo simulations and find that for
sufficiently low temperatures, there is anomalous diffusion and
stretched-exponential relaxation of spin correlations. The relaxation times
associated with spin correlations and diffusion both diverge at low
temperatures in a sub-Arrhenius fashion if the fit is done over a large
temperature-window or an Arrhenius fashion if only low temperatures are
considered. We find evidence of spatially heterogeneous dynamics, in which
vacancies created by changes in occupation facilitate spin flips on
neighbouring sites. We find violations of the Stokes-Einstein relation and
Debye-Stokes-Einstein relation and show that the probability distributions of
local spatial correlations indicate fast and slow populations of sites, and
local spin correlations indicate a wide distribution of relaxation times,
similar to observ ations in other glassy systems with and without quenched
disorder.Comment: 12 pages, 17 figures, corrected erroneous figure, and improved
quality of manuscript, updated reference
Sticky Spheres, Entropy barriers and Non-equilibrium phase transitions
A sticky spheres model to describe slow dynamics of a non-equilibrium system
is proposed. The dynamical slowing down is due to the presence of entropy
barriers. We present an exact mean field analysis of the model and demonstrate
that there is a non-equilibrium phase transition from an exponential cluster
size distribution to a powerlaw.Comment: 10pages text and 2 figure
Time and length scales in supercooled liquids
We numerically obtain the first quantitative demonstration that development
of spatial correlations of mobility as temperature is lowered is responsible
for the ``decoupling'' of transport properties of supercooled liquids. This
result further demonstrates the necessity of a spatial description of the glass
formation and therefore seriously challenges a number of popular alternative
theoretical descriptions.Comment: 4 pages, 4 figs; improved version: new refs and discussion
- …