274 research outputs found

    Temperature-dependent regulation of d-cis-[3H]diltiazem binding to Ca2+ channels by 1,4-dihydropyridine channel agonists and antagonists

    Get PDF
    AbstractThe binding of the Ca2+-channel blocker d-cis-[3H]diltiazem to guinea pig skeletal muscle microsomes is temperature-dependent. At 2Β°C the KD is 39 nM and Bmax is 11 pmol/mg protein. The binding is fully reversible (Kβˆ’1 = 0.02 minβˆ’1). The binding sites discriminate between the diastereoisomers 1- and d-cis-diltiazem, recognize verapamil, gallopamil and tiapamil, and are sensitive to La3+-inhibition. At 30Β°C the KD is 37 nM and the Bmax is 2.9 pmol/mg protein. D-cis-diltiazem-labelling is regulated by the 1,4-dihydropyridine Ca2+-channel blockers and a novel Ca2+-channel activator in a temperature-dependent manner. At 30Β°C an enhancement of d-cis-diltiazem binding by the channel blockers is observed. This is attributed to a Bmax increase. EC50-values for enhancement and the maximal enhancement differ for the individual 1,4-dihydropyridines. At 2Β°C 1,4-dihydropyridines inhibit d-cis-[3H]diltiazem binding. This is attributed to a Bmax decrease. We have directly labelled one of the drug receptor sites within the Ca2+-channel which can allosterically interact with the 1,4-dihydropyridine binding sites

    Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels

    Get PDF
    The cloning of the cDNA for the Ξ±1 subunit of L-type calcium channels revealed that at least two genes (CaCh1 and CaCh2) exist which give rise to several splice variants. The expression of mRNA for these Ξ±1 subunits and the skeletal muscle Ξ±2/Ξ΄, Ξ² and Ξ³ subunits was studied in rabbit tissues and BC3H1 cells. Nucleic-acid-hybridization studies showed that the mRNA of all subunits are expressed in skeletal muscle, brain, heart and aorta. However, the Ξ±1-, Ξ²- and Ξ³-specific transcripts had different sizes in these tissues. Smooth muscle and heart contain different splice variants of the CaCh2 gene. The Ξ±1, Ξ² and Ξ³ mRNA are expressed together in differentiated but not in proliferating BC3H1 cells. A probe specific for the skeletal muscle Ξ±2/Ξ΄ subunit did not hybridize to poly(A)-rich RNA from BC3H1 cells. These results suggest that different splice variants of the genes for the Ξ±1, Ξ² and Ξ³ subunits exist in tissues containing L-type calcium channels, and that their expression is regulated in a coordinate manner

    A Genetic Screen for Dihydropyridine (DHP)-Resistant Worms Reveals New Residues Required for DHP-Blockage of Mammalian Calcium Channels

    Get PDF
    Dihydropyridines (DHPs) are L-type calcium channel (Cav1) blockers prescribed to treat several diseases including hypertension. Cav1 channels normally exist in three states: a resting closed state, an open state that is triggered by membrane depolarization, followed by a non-conducting inactivated state that is triggered by the influx of calcium ions, and a rapid change in voltage. DHP binding is thought to alter the conformation of the channel, possibly by engaging a mechanism similar to voltage dependent inactivation, and locking a calcium ion in the pore, thereby blocking channel conductance. As a Cav1 channel crystal structure is lacking, the current model of DHP action has largely been achieved by investigating the role of candidate Cav1 residues in mediating DHP-sensitivity. To better understand DHP-block and identify additional Cav1 residues important for DHP-sensitivity, we screened 440,000 randomly mutated Caenorhabditis elegans genomes for worms resistant to DHP-induced growth defects. We identified 30 missense mutations in the worm Cav1 pore-forming (Ξ±1) subunit, including eleven in conserved residues known to be necessary for DHP-binding. The remaining polymorphisms are in eight conserved residues not previously associated with DHP-sensitivity. Intriguingly, all of the worm mutants that we analyzed phenotypically exhibited increased channel activity. We also created orthologous mutations in the rat Ξ±1C subunit and examined the DHP-block of current through the mutant channels in culture. Six of the seven mutant channels examined either decreased the DHP-sensitivity of the channel and/or exhibited significant residual current at DHP concentrations sufficient to block wild-type channels. Our results further support the idea that DHP-block is intimately associated with voltage dependent inactivation and underscores the utility of C. elegans as a screening tool to identify residues important for DHP interaction with mammalian Cav1 channels

    Apical and basolateral localisation of GLUT2 transporters in human lung epithelial cells

    Get PDF
    Glucose concentrations of normal human airway surface liquid are ~12.5 times lower than blood glucose concentrations indicating that glucose uptake by epithelial cells may play a role in maintaining lung glucose homeostasis. We have therefore investigated potential glucose uptake mechanisms in non-polarised and polarised H441 human airway epithelial cells and bronchial biopsies. We detected mRNA and protein for glucose transporter type 2 (GLUT2) and glucose transporter type 4 (GLUT4) in non-polarised cells but GLUT4 was not detected in the plasma membrane. In polarised cells, GLUT2 protein was detected in both apical and basolateral membranes. Furthermore, GLUT2 protein was localised to epithelial cells of human bronchial mucosa biopsies. In non-polarised H441 cells, uptake of d-glucose and deoxyglucose was similar. Uptake of both was inhibited by phloretin indicating that glucose uptake was via GLUT-mediated transport. Phloretin-sensitive transport remained the predominant route for glucose uptake across apical and basolateral membranes of polarised cells and was maximal at 5–10Β mM glucose. We could not conclusively demonstrate sodium/glucose transporter-mediated transport in non-polarised or polarised cells. Our study provides the first evidence that glucose transport in human airway epithelial cells in vitro and in vivo utilises GLUT2 transporters. We speculate that these transporters could contribute to glucose uptake/homeostasis in the human airway

    Potent interaction of flavopiridol with MRP1

    Get PDF
    The multidrug resistance protein 1 (MRP1) is an ATP-dependent transport protein for organic anions, as well as neutral or positively charged anticancer agents. In this study we show that flavopiridol, a synthetic flavonoid currently studied in phase 1 trials for its anti-proliferative characteristics, interacts with MRP1 in a potent way. Flavopiridol, as well as other (iso)flavonoids stimulate the ATPase activity of MRP1 in a dose-dependent way at low micromolar concentrations. A new specific monoclonal antibody against MRP1 (MIB6) inhibits the (iso)flavonoid-induced ATPase activity of plasma membrane vesicles prepared from the MRP1 overexpressing cell line GLC4/ADR. The accumulation of daunorubicin in GLC4/ADR cells is increased by flavopiridol and by other non-glycosylated (iso)flavonoids that interact with MRP1 ATPase activity. However, flavopiridol is the only tested compound that affects the daunorubicin accumulation when present at concentrations below 1 ΞΌM. Glycosylated (iso)flavonoids do not affect MRP1-mediated transport or ATPase activity. Finally, MRP1 overexpressing and transfected cells are resistant to flavopiridol, but not to other (iso)flavonoids tested. These findings may be of relevance for the development of anticancer therapies with flavopiridol. Β© 1999 Cancer Research Campaig

    Adrenal cortex adenylate cyclase

    No full text
    • …
    corecore