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The binding of the Ca’+-channel blocker d-cis-[3H]diltiazem to guinea pig skeletal muscle microsomes is 
temperature-dependent. At 2°C the KD is 39 nM and B max is 11 pmol/mg protein. The binding is fully 
reversible (K-r = 0.02 min-‘). The binding sites discriminate between the diastereoisomers l- and 
d-cis-diltiazem, reconize verapamil, gallopamil and tiapamil, and are sensitive to La’+-inhibition. At 30°C 
the KD is 37 nM and the Bmpx is 2.9pmol/mg protein. D-cis-diltiazem-labelling is regulated by the 
1 +dihydropyridine Ca’+-channel blockers and a novel Ca’+-channel activator in a temperature-dependent 
manner. At 30°C an enhancement of d-cis-diltiazem binding by the channel blockers is observed. This is 
attributed to a B, increase. ECse-values for enhancement and the maximal enhancement differ for the 
individual 1 ,Cdihydropyridines. At 2°C 1 ,Cdihydropyridines inhibit d-cis-[‘H]diltiazem binding. This is 
attributed to a B,, decrease. We have directly labelled one of the drug receptor sites within the 

Ca2+-channel which can allosterically interact with the 1 ,4-dihydropyridine binding sites. 

Skeletal muscle 

1. INTRODUCTION 

Radiolabelled 1 ,Cdihydropyridines can be em- 
ployed to directly identify putative Ca’+-channels 
in skeletal muscle membranes [l-3]. These skeletal 
muscle 1 ,Cdihydropyridine binding sites have a 
density which exceeds that of any other known 
source and can be enriched in t-tubular membranes 
[ 1,2]. The structurally unrelated Ca2+-channel 
blocker d-cis-diltiazem acts as a positive allosteric 
regulator of 1 ,Cdihydropyridine binding [ 11. This 
allosteric interaction with the 1 ,Cdihydropyridine 
site is not shared by the diastereoisomer l-cis- 
diltiazem, which is devoid of Ca2+-channel blocking 
activity [4] and is a tissue- but not species-specific 
phenomenon [5]. 

Using guinea pig skeletal muscle microsomes as 
a Ca’+-channel source and d-cis-[3H]diltiazem we 
have directly labelled the drug receptor site within 

Ca’+-channel 1,4_Dihydropyridine 

the putative Ca 2+-channel which mediates the allo- 
steric regulation of 1 ,Cdihydropyridine binding. 

2. MATERIALS AND METHODS 

The sources and the specific activities of tritiated 
ligands were as follows: [3H]nitrendipine (72 Ci/ 
mmol) and [ ‘Hlnimodipine (160 Ci/mmol) were 
from Bayer AG (Wuppertal); d-cis[O-methyl-‘HI- 
diltiazem (spec. act. 85 Ci/mmol) was supplied by 
Goedecke AG (Freiburg). Thin-layer chromato- 
graphy on Kieselgel F254 (Merck, Darmstadt) with 
the solvent CHC~~/C~HSOH/H~O/CH~COOH 
(30 : 48 : 12 : 4, by vol.) demonstrated a radiochemi- 
cal purity of >95%. Sources for unlabelled drugs 
have been given in [ 1,6]. Sea-anemone toxin II and 
tetrodotoxin were gifts from Professor Habermann 
(Giessen); other sodium channel toxins and drugs 
were from Dr Honerjlger (Munchen). The 1,4- 
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dihydropyridine Bay K 8644 (methyl-l ,4-dihydro- 
2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)- 
pyridine-Qarboxylate) [7] as well as the nitrendi- 
pine derivative M 5579 were from Bayer AG 
(Wuppertal). Enantiomers of PN 200-110 (isopropyl 
4-(2,1,3,benzoxadiazol-4-yl)-1,4-dihydro-2,6-di- 
methyl-5-methoxycarboxy-pyridine-3-carboxylate) 
and the inactive 7-bromo substituted racemic PN 
200-110 (Vo2605) were from Sandoz AG (Basel). 
KG-944 (diethyl 4@enzothiazol-2-yl)-benzylphos- 
phonate) was from Kanebo (Osaka). 

Binding assays (filtration method) and prepara- 
tion of guinea pig hind limb skeletal muscle micro- 
somes were for labelled 1,4_dihydropyridines as in 

Fig. 1. Temperature-dependent binding of [ 3H]nitrendi- 
pine (4.43 nM), [3H]nimodipine (1.56 nM) and d-cis- 
[3H]diltiazem (3.12 nM) to guinea pig skeletal muscle 
microsomes (0.16 mg protein/ml). Each point is the 
mean of 3 expt *SEM. In the case where [3H]nitren- 
dipine and [3H]nimodipine labelled the Ca2+ channel, 
d-cis-diltiazem (lOaM) (closed symbols) was also present 
during the incubation; in the case were d-cis-(“HI- 
diltiazem labelled the channel, nitrendipine (0.1 pM), 
Bay K 8644 (1 FM) and (+)verapamil (1 PM) were present 
during the incubation as indicated. The incubation times 
for the various temperatures were as follows: 2°C (4 h), 
10°C (3 h), 20°C (2 h), 30°C (1 h), 37°C (30min). For 
the 1 ,Cdihydropyridine labelling experiments of Ca2+ 
channels the calculated difference between the concen- 
trations of ligand specifically bound in the absence and 

presence of d-cis-diltiazem is plotted as (O---O). 

[ 11. The d-c&[ ‘Hldiltiazem binding assays were 
performed in 50mM Tris-HCl @H 7.4) as des- 
cribed for the tritiated 1 ,Cdihydropyridines; satur- 
able binding was defined as the difference between 
total radioactivity bound and that observed in the 
presence of 1OpM unlabelled d-cis-diltiazem. The 
assay volume was 0.25 ml, the incubation times 
and the temperature varied as outlined in section 3. 

In brief, for the 2’C experiments 4 h of incuba- 
tion with d-cis-[‘Hldiltiazem at 0.5-4OOnM was 
used. For evaluation of the pharmacological profile 
3.5-7 nM d-cis-[‘Hldiltiazem and 0.1-0.3 mg/ml 
of guinea pig skeletal muscle microsomal mem- 
brane protein was employed. Specific binding of 
d-cis-[3H]diltiazem was linearly proportional to 
guinea pig microsomal protein (up to 0.6 mg/ml). 
At 0.1-0.3 mg protein/ml and 3.5-7 nM 3H-ligand, 
0.2-0.3% of the total radioactivity present in the 
assay was non-specifically trapped by Whatman 
GF/C filters. These blank values were close or iden- 
tical to the filter blank (measured in the absence of 
membranes). The following drugs gave non-specific 
binding values indistinguishable from 10,uM d-cis- 
diltiazem: (-)D-600 (at 0.3pM), (+)verapamil (at 
5pM) and tiapamil or KB 944 (at 10pM). Equi- 
librium saturation isotherms at 2°C (4 h incuba- 
tion) and 30°C (1 h incubation) were calculated 
from experiments in which the concentration of 
free radioligand was varied over a 60-800 range, 
by decreasing the specific activity and by changing 
the concentration of the radioligand, respectively. 
Data analysis for binding-inhibition experiments 
was as in [l]. 

3. RESULTS 

3.1. Temperature dependence of d-cis-[ 3H]diltia- 
zem binding and of the d-cis-diltiazem effect 
on I,4-dihydropyridine labeling of putative 
Ca’+-channels in skeletal muscle microsomes 

Fig.1 shows an experiment where two tritiated 
chiral 1,Cdihydropyridines (nitrendipine and nimo- 
dipine) were employed to label the putative Ca*+ 
channel in guinea pig skeletal muscle microsomal 
membranes. The experiment was performed in the 
absence and presence of 10pM d-cis-diltiazem. It 
can be seen that the stimulatory d-cis-diltiazem 
effect is highly temperature-dependent. 

The specific binding of d-cis-[‘Hldiltiazem was 
measured in parallel. In analogy to the experiment 
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with the labelled 1 ,Cdihydropyridines, where d- 
cis-diltiazem was present, several unlabelled 
1 ,Cdihydropyridines were added at the indicated 
concentrations. The binding-temperature profile 
shows that an increase from 2-37°C leads to a 
5-fold decrease in specific binding of d-cis- 
[3H]diltiazem. However, this binding-temperature 
profile was characteristically changed by the 
simultaneous presence of 1,4_dihydropyridines. At 
0°C and 10°C all 1,Cdihydropyridines including 
nimodipine (not shown), nitrendipine, PN 200-100 
(not shown) and Bay K 8644 were inhibitory, 
whereas at 220°C they were stimulatory to a dif- 
ferent extent. As will be shown below, these 
stimulatory effects are stereospecific for chiral 
1,6dihydropyridines. The most interesting finding 
is the differential behaviour of the various 
1,4-dihydropyridines. Included in this series is the 
novel l,Cdihydropyridine, Bay K 8644, which ac- 
tivates instead of blocking Ca’+-channels in guinea 
pig hearts and rabbit aortic strips [7] apparently by 
binding to the same drug receptor site as the 1,4-di- 
hydropyridine channel blockers. Bay K 8644 had a 
Ki-value of 50 c 15 nM for the [3H]nimodipine 
binding- site in skeletal muscle microsomal mem- 
branes (not shown). 
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Fig.2. Equilibrium saturation isotherm of d-cis-[3H]dil- 
tiazem binding to Ca*’ -channels at 2°C. Each point is 
the mean from duplicate determinations for both, total 
and non-specific binding; the data for specific binding 
are presented as a Scatchard plot. The concentration of 
guinea pig skeletal protein was 0.082 mg/ml. The corre- 
lation coefficient for the linear regression was 0.98; 

B ,- = 0.94 nM (= 11.465 fmol/mg protein); 
KD = 31.5 nM. 

stimulation at higher temperatures (see below). In 
contrast to these 1 ,Cdihydropyridines, (+) and 
(-)verapamil were inhibitoy at all temperatures. 

3.2. Equilibrium binding parameters, kinetics and 
pharmacological profile of the d-cis-[3HJdil- 
tiazem binding sites 

This agonistic 1,Cdihydropyridine was of high The above experiments demonstrated that satur- 
efficacy to inhibit d-cis-[3H]diltiazem binding at able d-cis-[3H]diltiazem binding was dependent on 
low temperatures, but was of low efficacy for the temperature and that this temperature depen- 

Table 1 

Equilibrium binding parameters and kinetic constants for d-ci.r-[3H]diltiazem labelled Ca’+-channels in guinea pig 
skeletal muscle microsomes 

Parameter Temperature 

B,,,, (fmol/mg protein) 
& (nM) 
Dissociation rate 

constant (min-‘) 
Association rate 

constant (nM_' . min-‘) 

2°C 30°C 
Nitrendipine Nitrendipine 

Absent Present Absent Present 

11020 f 1380 (6)” 6170 + 1250 (3)b 2911 + 608 (3)’ 8400 f 1400 (3) 
39.0 * 5.0 (6) 45 f 7.6 (3) 37 * 9 (3) 50 * 7 (3) 
0.02 & 0.01 (3) n.d. n.d. n.d. 

0.00053 f 0.0001 (3) n.d. n.d. n.d. 

Mean data *SEM are given. The number of experiments are given in parentheses. Equilibrium binding parameters at 
2°C and 30°C were also determined in the presence of 0.5pM nitrendipine 
n.d. = not determined; ap<0.05 for 2°C vs 30°C; bp<0.05 for nitrendipine present vs nitrendipine absent at 2°C; 
‘p c 0.05 for nitrendipine absent vs nitrendipine present (Student’s two-tailed t-test) 
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Fig.3. Association and dissociation kinetics of d-cis- 
[3H]diltiazem. Upper panel: Guinea pig microsomal 
membranes (0.16 mg protein/ml) were incubated at 2°C 
with 7.35 nM d-cis-[3H]diltiazem for the indicated times 
and the concentration of specifically bound ligand deter- 
mined. Each point is the mean of 2 obs. for both total 
and non-specific binding (which did not increase with 
time). In the insert the kinetic data between 0 and 90 min 
are plotted according to the Kobs method. Z& was 
0.024 min-’ and k+ 1 (association rate constant) derived 
from Kobs and k-1 was 0.0059 nM_' . rnin-‘. Direct non- 
linear curve-fitting of the data to the differential form of 
the second order rate equation yielded (*asymptotic 
standard deviation) 0.003 k 0.0002 nM_’ . min-’ for K+I 
and0.019 + O.O014min-‘for thek-1, andareceptor con- 
centration of 1.6 nM. Lower: after 4 h of incubation of 
guinea pig skeletal muscle microsomal protein (0.072 mg/ 
ml) at 2°C with 6.6nM d-cis-[‘Hldiltiazem (zero time 
point) the blockade of the forward reaction was initiated 
by addition of IOpM d-cis-diltiazem. Each point is the 
mean of a duplicate experiment for the given times. 
Insert: Transformation of the dissociation data by 

plotting In@,/&) yielded a slope of -0.022 min-’ 
(correlation coefficient: 0.97) K-1 = 0.022 min-‘. 

dence was opposed to the stimulatory effect of d- 
cis-[3H]diltiazem on 1 ,Cdihydropyridine binding. 
It was found (fig.2, table 1) that at 2°C d-cis- 
diltiazem labelled 11 pmol/mg protein of binding 
sites, with a Hill coefficient being close to unity 
and a KD of 39nM, whereas at 30°C only 
2.9pmoVmg protein was labelled with the same 

Kn. Thus, at 3O”C, a considerable fraction of the 
binding sites must be in a state which is either not 
available to the ligand or is of such low affinity 
(& > 5pM) that it cannot be measured with the 
filtration technology. The average kinetic para- 
meters for d-cis-[3H]diltiazem binding are given in 
table 1 and examples of kinetic experiments are 
shown in fig.3. Binding of d-cis-[3H]diltiazem was 
fully reversible. The dissociation, induced by 
blockade of the forward reaction by unlabelled 
d-cis-diltiazem, was monophasic with a half-life of 
35 min at 2°C. The KD, derived from the rate con- 
stants (37.7 nM), is in excellent agreement with the 
Kd calculated from the equilibrium binding satura- 
tion isotherms. The pharmacological profiles of 
the d-cis-diltiazem binding sites are given in table 
2. Most notable is, that the binding sites discrimi- 
nate between I- and d-cis-diltiazem and recognize 
the structurally different Ca’+-channel blockers 
verapamil, gallopamil, tiapamil and KB-944, 
which is an allosteric regulator of l,cdihydro- 
pyridine binding as is d-cis-diltiazem. The in- 

Table 2 

Pharmacological profile of the d-cis-[3H]diltiazem 
binding sites determined at 2°C 

Drug GO NM) nH 

Ca2+-Channel drugs: 
d-cis-Diltiazem 54.0 f 1.4 0.99 + 0.1 
I-cis-Diltiazem 6680 & 25.0 0.85 + 0.04 
(+)Gallopamil 42.1 f 0.6 0.99 * 0.06 
(-)Gallopamil 17.5 + 2.8 1.04 f 0.04 
(+)Verapamil 43.2 + 0.6 1.02 + 0.1 
(-)Verapamil 54.0 f 20.0 1.06 k 0.14 
Tiapamil 406.0 * 45.0 1.19 f 0.12 
KB-944 358.0 * 57.0 0.98 + 0.03 
La3+ 3.48 * 0.82 x lo5 1.09 + 0.05 

Na+-Channel drugs: 
Tetrodotoxin No effect 
Germitrine No effect 
Sea anemone toxin II No effect 
Veratridine No effect 

nH is the Hill slope and ZCSO the concentration of drug 
causing 50% inhibition. ZCso-values and Hill slopes were 
derived from 3-4 binding-inhibition experiments where 
7-9 concentrations of drug were tested in duplicate. Na+ 
channel drugs were tested at concentrations between 1 

and lOO@M 
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Fig.4. Temperature-dependent regulation of d-cis-[3H]- 
diltiazem binding to guinea pig skeletal muscle microso- 
ma1 membranes by 1 ,Cdihydropyridines. The con- 
centration-effect curves were constructed by incubating 
9-14 different concentrations of 1,Cdihydropyridines at 
either 2°C (lower), (4 h incubation) or 30°C (upper) with 
d-c&[ ‘Hldiltiazem and guinea pig skeletal muscle mem- 
branes. Each point is the mean from a duplicate deter- 
mination for specific binding and the results are express- 
ed as the ratio between B (concentration of d-cis- 
t3H]diltiazem specifically bound in the presence of the 
respective 1 ,Cdihydropyridine) and Bo (the specifically 
bound [3H]ligand concentration in the absence of the 
1,4_dihydropyridine). In the insert an experiment with 
enantiomers of PN 200-l 10 is shown: (+)PN = 205033; 

(-)PN = 205-034. 

t3H]diltiazem. This is in contrast to the enantio- 
mers of verapamil, which were inhibitory at all 
temperatures investigated. Fig.4 shows the dose- 
dependency of the stimulatory effect of different 
1,Cdihydropyridines at 30°C. It was found that 
the stimulation was stereospecific as the enantio- 
mers of PN 200-l 10 display an eudismic ratio of 
2150 which is close to their eudismic ratio for the 
1 ,Cdihydropyridine binding site labelled with [ 3H]- 
nimodipine [ 11. The individual 1,Cdihydropyridines 
differed with respect to the maximal stimulation 
and their ECso-values. The respective parameters 

organic Ca2+- channel blocker La’+ also inhibited 
d-cis-[3H]diltiazem binding, whereas several 
Na+-channel drugs were completely inactive. 

3.3. Regulation of d-cis-[-‘H/diltiazem binding by 
I,4-dihydropyridines 

Depending on temperature, 1,Cdihydropyridines 
can either stimulate or inhibit the binding of d-cis- 

Table 3 

Effects of various 1,4_dihydropyridines on Ca’+ -channel labelling by d-cis-[3H]diltiazem at 2°C and 30°C 

Drug 2°C 30°C 

IGO W) Maximal inhibition EGO (nM) Maximal stimulation 

Nitrendipine 
Nimodipine 
Bay K 8644 
(+)205-033 
(-)205-034 
vo 2605 
M 5579 

8.75 + 2.8 59.8 f 1.9 33.5 * 14 250 f 4 
34.0 f 14.7 83.3 & 2.0 24.5 f 6.4 2OOk 6 
47.0 f 1.2 64.0 + 3.5 ~500 123 f 3 

7.8 + 0.4 61.4 f 0.4 6.1 + 2.6 230 + 14 
63.0 f 11.0 81.0 f 2.0 >lOOO 144* 7 

n.d. no effect up to 1aM 
no effect up to 1pM no effect up to 1pM 

For 2°C experiments the average maximal inhibition data as percentages (Bo-B) x 100 (at Q 1pM) and the average 
ICso-values are given. For 30°C experiments the E&-values and the maximal stimulation values (at < 1 ,zM) are pre- 
sented. Stimulation is expressed as (B/Be) x 100; B is the concentration of d-cis-[3H]diltiazem specifically bound in the 
presence of the 1,Cdihydropyridine and Bo that in the absence of the l,Cdihydropyridine, respectively. (+)205-033 is 
the (+) enantiomer of PN 200-l 10 and (-)205-034 is the (-)enantiomer. Vo 2506 is the 7-bromo-substituted PN 200-l 10 
and M 5579 an inactive nitrendipine derivative with a free carboxyl group. Data are means of 2, or means of 3-4 
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are given in table 3. From the 1,Cdihydropyridines 
investigated, nitrendipine and (+)enantiomer of 
PN200-110 had the highest efficacy for stimula- 
tion. Most interesting is that the agonistic 1,4- 
dihydropyridine, Bay K 8644, was extremely weak 
with respect to stimulation. The benzoxadiazol 
1,Cdihydropyridine Vo 2605, which is a 7-bromo 
substituted PN 200-110, and about 3 orders of 
magnitude weaker in affinity for the l,Cdihydro- 
pyridine binding site as compared to PN 200-l 10 
[8] was inactive, as was M 5579, which is an in- 
active nitrendipine derivative with a free carboxyl 
group 191. To determine the nature of the d-cis- 
[ 3H]diltiazem stimulation we have investigated the 
effects of nitrendipine (at 0.5pM) on the equi- 
librium binding parameters at 30% (table 1). The 
1 ,Cdihydropyridine channel blocker increased the 
density of sites labelled by d-cis-[‘Hldiltiazem at 
30°C. 

Fig.4 shows that the 1,Cdihydropyridines in- 
hibited d-cis-[‘H]diltiazem binding at 2°C in a con- 
centration-dependent manner. The respective mean 
IGo-values and maximal inhibition percentages 
are also shown in table 3. The effects of 0.5/1M 
nitrendipine were tested on the equilibrium binding 
parameters as above. This 1 ,Cdihydropyridine 
channel blocker decreased the density of sites 
labelled by d-cis-[3H]diltiazem at 2°C (table 1). 

4. DISCUSSION 

Our experiments show that d-cis-[3H]diltiazem 
binds in a reversible manner and with an equi- 
librium dissociation constant of 39 nM to guinea 
pig skeletal muscle membranes. The binding sites 
were stereoselective as I-cis-diltiazem was of much 
lower affinity than d-cis-diltiazem. Verapamil, 
pallopmil, tiapamil and the d-cis-diltiazem-like 
Ca’+-channel blocker KB-944, as well as the in- 
organic Ca2+-channel antagonist La3+, were in- 
hibitory at the d-cis-[3H]diltiazem binding sites; in 
contrast, Na+-channel drugs were inactive. The 
binding of d-cis-13H]diltiazem was temperature 
dependent and 1 ,Cdihydropyridines regulated the 
binding in a complex manner. At 30°C the 1,4-d& 
hydropyridines, to a different extent, stimulated 
stereospecifically (the eudismic ratio of the two 
enantiomers of PN 200-110 was >150), whereas at 
2°C they inhibited. In addition, two 1,4-dihydro- 
pyridine derivatives which are of extremely low af- 

finity for the 1 ,Cdihydropyridine drug receptor 
and are almost devoid of Ca2+-channel blocking 
activity, did not stimulate at all. We conclude, that 
we have directly labelled the receptors for Ca’+- 
channel drugs, which act as positive heterotropic 
allosteric regulators on the 1 ,Cdihydropyridine 
binding sites. The stoichiometry between the 
allosteric sites and the 1 ,Cdihydropyridine binding 
sites appears to be 1: 1 or 1: 2, depending on the 
density of the latter, which is a function of the 
radioligand [lo]. 

In the absence of l,Cdihydropyridines, d-cis- 
[‘Hldiltiazem labelled more sites at 2°C than at 
30°C. It is therefore reasonable to conclude that 
the marked temperature-dependence of d-cis- 
[‘Hldiltiazem binding reflects the temperature- 
dependence of the constant governing the equi- 
librium between high affinity (KD 39 nM) and low 
affinity states (KD 2 5/1M) of the Ca2+-channel 
d-cis-diltiazem binding sites. 

Likewise, the same conclusion may be drawn for 
the 1 ,Cdihydropyridine labelling of Ca2+-channels, 
since we show that, as for d-cis-[3H]diltiazem, 
maximal labelling occurs at <lO”C. One of the 
actions of d-cis-diltiazem at 820°C is the establish- 
ment of a new equilibrium of low and high affinity 
states for 1 ,Cdihydropyridine channel blockers, 
favouring the high-affinity state [ 1,5,6, lo]. In 
accord with this, the d-cis-diltiazem effect on the 
1,4dihydropyridine labelling of the channels was 
minimal or absent at 2°C and was maximal at 
37°C. In view of the Ca’+-channel blocking acti- 
vity of d-cis-diltiazem and the 1,6dihydropyridines 
nimodipine and nitrendipine, it is tempting to 
postulate that the high-affinity labelled channel for 
these radioligands is a ‘shut’ channel, whereas the 
low affinity state is equivalent to the ‘unshut’ 
channel. Whether or not for example the hypo- 
thetical ‘shut’ channel-state in depolarized mem- 
brane fragments is comparable to the open (but 
drug-blocked), closed or inactivated channel-states, 
as they may occur in intact tissues, is an open ques- 
tion. Based on the above assumptions we provide 
the following hypothesis for the differential tem- 
perature effect of the 1 ,Cdihydropyridines and 
their different efficacies for stimulation (e.g. at 
30°C) in comparison to their efficacy for inhibi- 
tion (at 2°C): 

The 1 ,Cdihydropyridine Ca2+-channel blockers 
increase the fraction of channels in ‘shut’ state for 
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d-cis-[3H]diltiazem at 30°C; but, because their 
relative affinities for ‘shut’ and ‘unshut’ channels 
differ, they vary in their intrinsic efficacy. Nitren- 
dipine > (+)205-033 > nimodipine > (-)205-034 > 
Bay K 8644 2 Vo 2650, M 5579 is then the rank 
order of efficacies for the conversion into the 
‘shut’ state for these 1 ,Cdihydropyridines. 

In contrast, at 2”C, where all of the channels 
which can be labelled with d-cis-[3H]diltiazem are 
‘shut’ channels, the rank order of efficacies for 
keeping channels in the ‘unshut’ state was quite dif- 
ferent: nimodipine = (-)205-034 > Bay K8644 = 
(+)205-033 = nitrendipine. One must conclude that 
none of the 1,6dihydropyridines investigated can 
be a pure Ca ‘+-channel agonist or antagonist. This 
is indeed the case. Bay K 8644 is only a partial 
agonist [7] and nimodipine, when compared to 
nitrendipine in classical pharmacological experi- 
ments, has stronger agonistic properties (Towart, 
personal communication). Most interesting in this 
context is the behaviour of the enantiomers of the 
PN 200-110. One would expect, based on our 
hypothesis, that the (-)enantiomer, compared to 
the (+)enantiomer, may behave as a partial 
Ca2+-channel agonist, whereas the (+)enantiomer 
could be an almost pure antagonist. Also, the 
eudismic ratio of the ECso-values for the two en- 
antiomers, which is 2150 for stimulation, was re- 
duced to .=lO when the Z&-values for inhibition 
are compared. Clearly, the interaction of Ca’+- 
channel drugs with their binding sites is of remark- 
able complexity and far from being understood. 
The concept of a continuum of Ca’+-channel drugs 
ranging from agonists to antagonists was proposed 
earlier, based on a comparison of Ca2+-channel 
labelling by different 1,6dihydropyridines in skele- 
tal muscle microsomes [lo]. The present findings, 
with d-cis-[3H]diltiazem labelling of the allosteric 
regulatory site, support this concept. One impor- 
tant conclusion is, that affinities of Ca2+-channel 
drugs, found in classical pharmacological or elec- 
trophysiological experiments, may or may not be 
identical to the affinities measured by direct label- 
ling of the channels. The partial agonism of the 
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drugs, taken together with the possible existence of 
subtypes of Ca2+-channels [5,8], may be the mole- 
cular basis for the apparent tissue selectivity of 
Ca2+-channel drugs which is so far not understood 
but has considerable therapeutic implications. 
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