18 research outputs found

    VizieR Online Data Catalog: Planck Sunyaev-Zeldovich sources (PSZ2) (Planck+, 2016)

    Get PDF
    Three pipelines are used to detect SZ clusters: two independent implementations of the Matched Multi-Filter (MMF1 and MMF3), and PowellSnakes (PwS). The main catalogue is constructed as the union of the catalogues from the three detection methods. The completeness and reliability of the catalogues have been assessed through internal and external validation as described in section 4 of the paper. (5 data files)

    A role for adult mammalian central nervious system neurogenesis in social behaviours

    No full text
    Bibliography: p. 189-210Some pages are in colour

    Bi-Parental Care Contributes to Sexually Dimorphic Neural Cell Genesis in the Adult Mammalian Brain

    Get PDF
    <div><p>Early life events can modulate brain development to produce persistent physiological and behavioural phenotypes that are transmissible across generations. However, whether neural precursor cells are altered by early life events, to produce persistent and transmissible behavioural changes, is unknown. Here, we show that bi-parental care, in early life, increases neural cell genesis in the adult rodent brain in a sexually dimorphic manner. Bi-parentally raised male mice display enhanced adult dentate gyrus neurogenesis, which improves hippocampal neurogenesis-dependent learning and memory. Female mice display enhanced adult white matter oligodendrocyte production, which increases proficiency in bilateral motor coordination and preference for social investigation. Surprisingly, single parent-raised male and female offspring, whose fathers and mothers received bi-parental care, respectively, display a similar enhancement in adult neural cell genesis and phenotypic behaviour. Therefore, neural plasticity and behavioural effects due to bi-parental care persist throughout life and are transmitted to the next generation.</p></div

    Predicting dementia diagnosis from cognitive footprints in electronic health records: a case–control study protocol

    No full text
    Introduction Dementia is a group of disabling disorders that can be devastating for persons living with it and for their families. Data-informed decision-making strategies to identify individuals at high risk of dementia are essential to facilitate large-scale prevention and early intervention. This population-based case–control study aims to develop and validate a clinical algorithm for predicting dementia diagnosis, based on the cognitive footprint in personal and medical history.Methods and analysis We will use territory-wide electronic health records from the Clinical Data Analysis and Reporting System (CDARS) in Hong Kong between 1 January 2001 and 31 December 2018. All individuals who were at least 65 years old by the end of 2018 will be identified from CDARS. A random sample of control individuals who did not receive any diagnosis of dementia will be matched with those who did receive such a diagnosis by age, gender and index date with 1:1 ratio. Exposure to potential protective/risk factors will be included in both conventional logistic regression and machine-learning models. Established risk factors of interest will include diabetes mellitus, midlife hypertension, midlife obesity, depression, head injuries and low education. Exploratory risk factors will include vascular disease, infectious disease and medication. The prediction accuracy of several state-of-the-art machine-learning algorithms will be compared.Ethics and dissemination This study was approved by Institutional Review Board of The University of Hong Kong/Hospital Authority Hong Kong West Cluster (UW 18-225). Patients’ records are anonymised to protect privacy. Study results will be disseminated through peer-reviewed publications. Codes of the resulted dementia risk prediction algorithm will be made publicly available at the website of the Tools to Inform Policy: Chinese Communities’ Action in Response to Dementia project (https://www.tip-card.hku.hk/)

    Males with enhanced dentate gyrus neurogenesis display increased freezing during contextual fear conditioning.

    No full text
    <p>(A) MO, MV, and MP males show no difference in cue fear conditioning (mean±SEM). (B) MV and MP males display enhanced freezing in contextual fear conditioning, compared to MO males (mean±SEM) (n = 12 per group). (C and D) MO, MV, and MP females, which display no difference in dentate gyrus neurogenesis, show no difference in cue fear conditioning (mean±SEM) or contextual fear conditioning (mean±SEM), respectively. (E) MO males sired by MO, MV, or MP fathers display no difference in cue fear conditioning (mean±SEM). (F) However, MO males sired by MV or MP fathers display a greater percentage of freezing in contextual fear conditioning (mean±SEM) (MO males (P: MO male×MO female) (n = 10), MO males (P: MV male×MO female) (n = 7), and MO males (MP male×MO female) (n = 9)).</p

    Females with enhanced numbers of newly generated myelinating oligodendrocytes and myelinated axons in the corpus callosum display greater bilateral motor coordination and preference for social investigation.

    No full text
    <p>(A) MV and MP females display less slipping on the horizontal ladder rung task than MO females (n = 11 per group). (B) MV and MP females also show a greater preference for social investigation as they spend more time investigating a novel conspecific than an inanimate object (mean±SEM) (n = 10 per group). (C and D) MO, MV, and MP males, which do not display enhanced oligodendrogliogenesis, show no difference in performance on the horizontal ladder rung. MO, MV, and MP males all demonstrate a greater preference for investigating the novel conspecific versus the inanimate object (mean±SEM) (n = 8 per group). (E) MO females sired by MV or MP mothers demonstrate less slipping on the horizontal ladder rung over time (mean±SEM) (n = 10 per group). (F) MO females sired by MV or MP mothers display greater investigation towards a novel conspecific (mean±SEM) (MO females (P: MO female×MO male) (n = 10), MO females (MV female×MO male) (n = 11) and MO females (MP female×MO male) (n = 13)).</p

    Bi-parentally raised males display enhanced neurogenesis, which is transmitted to the next generation of male offspring.

    No full text
    <p>(A) Offspring raised in maternal-only (MO), maternal-virgin (MV) and maternal-paternal (MP) conditions display sexually dimorphic enhancement of adult dentate gyrus (DG) cell proliferation (mean±SEM), where MV and MP males have more BrdU-labeled cells in the DG compared to MO males (n = 5 per group). (B) Cell proliferation in the SVZ is no different among adult male and female offspring raised in different parental conditions (mean±SEM). (C and D) Representative fluorescent micrographs of BrdU-NeuN double labeled cells in the DG of males raised in a single parent environment and bi-parental (MV) environment, respectively. Bars represent 50 µm. (E) MV and MP males show enhanced neurogenesis in the DG (mean±SEM) (n = 5 per group). (F) Males raised in a maternal-only (MO) environment, but sired by MV or MP fathers have more BrdU-labeled cells (mean±SEM) versus MO males sired by MO fathers (n = 5 per group). (G) Males raised in a MO environment, but sired by MV or MP fathers have more BrdU-NeuN double-labeled cells in the DG (mean±SEM) (n = 4 per group).</p
    corecore