13 research outputs found
BioModels: ten-year anniversary
BioModels (http://www.ebi.ac.uk/biomodels/) is a repository of mathematical models of biological processes. A large set of models is curated to verify both correspondence to the biological process that the model seeks to represent, and reproducibility of the simulation results as described in the corresponding peer-reviewed publication. Many models submitted to the database are annotated, cross-referencing its components to external resources such as database records, and terms from controlled vocabularies and ontologies. BioModels comprises two main branches: one is composed of models derived from literature, while the second is generated through automated processes. BioModels currently hosts over 1200 models derived directly from the literature, as well as in excess of 140 000 models automatically generated from pathway resources. This represents an approximate 60-fold growth for literature-based model numbers alone, since BioModelsâ first release a decade ago. This article describes updates to the resource over this period, which include changes to the user interface, the annotation profiles of models in the curation pipeline, major infrastructure changes, ability to perform online simulations and the availability of model content in Linked Data form. We also outline planned improvements to cope with a diverse array of new challenges
BioModelsâ15 years of sharing computational models in life science
Computational modelling has become increasingly common in life science research. To provide a platform to support universal sharing, easy accessibility and model reproducibility, BioModels (https://www.ebi.ac.uk/biomodels/), a repository for mathematical models, was established in 2005. The current BioModels platform allows submission of models encoded in diverse modelling formats, including SBML, CellML, PharmML, COMBINE archive, MATLAB, Mathematica, R, Python or C++. The models submitted to BioModels are curated to verify the computational representation of the biological process and the reproducibility of the simulation results in the reference publication. The curation also involves encoding models in standard formats and annotation with controlled vocabularies following MIRIAM (minimal information required in the annotation of biochemical models) guidelines. BioModels now accepts large-scale submission of auto-generated computational models. With gradual growth in content over 15 years, BioModels currently hosts about 2000 models from the published literature. With about 800 curated models, BioModels has become the worldâs largest repository of curated models and emerged as the third most used data resource after PubMed and Google Scholar among the scientists who use modelling in their research. Thus, BioModels benefits modellers by providing access to reliable and semantically enriched curated models in standard formats that are easy to share, reproduce and reuse
The COVID-19 Data Portal: accelerating SARS-CoV-2 and COVID-19 research through rapid open access data sharing.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic will be remembered as one of the defining events of the 21st century. The rapid global outbreak has had significant impacts on human society and is already responsible for millions of deaths. Understanding and tackling the impact of the virus has required a worldwide mobilisation and coordination of scientific research. The COVID-19 Data Portal (https://www.covid19dataportal.org/) was first released as part of the European COVID-19 Data Platform, on April 20th 2020 to facilitate rapid and open data sharing and analysis, to accelerate global SARS-CoV-2 and COVID-19 research. The COVID-19 Data Portal has fortnightly feature releases to continue to add new data types, search options, visualisations and improvements based on user feedback and research. The open datasets and intuitive suite of search, identification and download services, represent a truly FAIR (Findable, Accessible, Interoperable and Reusable) resource that enables researchers to easily identify and quickly obtain the key datasets needed for their COVID-19 research
SBML Level 3: an extensible format for the exchange and reuse of biological models
Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution
Path2Models : large-scale generation of computational models from biochemical pathway maps
Systems biology projects and omics technologies have led to a growing number of biochemical pathway models and reconstructions. However, the majority of these models are still created de novo, based on literature mining and the manual processing of pathway data.publishe
Reproducibility in systems biology modelling
Reproducibility of scientific results is a key element of science and credibility. The lack of reproducibility across many scientific fields has emerged as an important concern. In this piece, we assess mathematical model reproducibility and propose a scorecard for improving reproducibility in this field
Path2Models: Large-scale generation of computational models from biochemical pathway maps
Systems biology projects and omics technologies have led to a growing number of biochemical pathway models and reconstructions. However, the majority of these models are still created de novo, based on literature mining and the manual processing of pathway data.US National Institute of General Medical Sciences grant: (GM070923), Federal Ministry of Education and
Research (BMBF, German) grants: (0315756, 01GS08134), Marie Curie International Outgoing Fellowship, US National Institute of General Medical Sciences grant: (GM080219), BBSRC grant: (BB/J019259/1), EMBL-EBI, nnovative Medicines Initiative Joint Undertaking under grant agreement: (115156