17 research outputs found

    Microstructure and defect analysis in the vicinity of blisters in polycrystalline tungsten

    Get PDF
    AbstractUp to now, analyzing the production of dislocation-type defects in the subsurface region of plasma or ion-exposed tungsten samples has been hampered by the challenging production of suitable cross-section samples for transmission electron microscopy. We present two reliable methods based on precision electropolishing to prepare cross-sections of tungsten that allow direct imaging of dislocation-type defects by scanning as well as by transmission electron microscopy. Using these methods, we are able to demonstrate a clear enhancement of the dislocation density in the caps of blisters on tungsten exposed to H isotope plasma, i.e., of surface morphologies that are correlated to subsurface cavities. As a benchmark, we also show a cross-section of tungsten irradiated by 20 MeV W6+ ions

    Kompozyty polimerowe z napełniaczami roślinnymi: wpływ rodzaju i zawartości napełniaczy na stabilność wymiarową oraz palność kompozytów na osnowie poliolefin

    No full text
    Composites of polyethylene matrices and fillers consisting of finely ground pistachio shells and sunflower husks were manufactured. These materials were subjected to a series of tests for the purpose of examining their processing qualities, physical, mechanical and thermal characteristics, flammability and resistance to environmental factors, determining their feasibility and application paths. The relationship between the natural fiber composites' morphology and stability was described. Based on the obtained test results, the influence of the lignin content and secondary components in the fillers' structure on the thermal stability of the composites was confirmed. It was also proven that the porosity of the composites and the hemicellulose content in the filler influenced the composites' capacity to take up considerable amounts of water.W ramach pracy wytworzono kompozyty na osnowie polietylenu napełnione drobno mielonymi łupinami pistacji oraz łuskami słonecznika. Materiały te poddano serii badań mających na celu poznanie ich właściwości przetwórczych, fizycznych, mechanicznych i termicznych, palności oraz odporności na działanie czynników środowiskowych, warunkujących możliwości i kierunki ich zastosowania. Określono związek między morfologią a stabilnością badanych kompozytów polimerowych z napełniaczami roślinnymi (NFC, z ang. natural fibre composites). Zbadano wpływ zawartości ligniny i pozostałych składników napełniaczy na stabilność termiczną NFC. Dowiedziono również, że na zdolność NFC do pochłaniania znacznych ilości wody zasadniczy wpływ ma porowatość kompozytów oraz zawartość hemicelulozy w napełniaczu

    The effects of the heat treatment on the microstructure of Inconel 625/steel bimetal joint obtained by explosive welding

    No full text
    In this investigation steel P355NH was successfully clad with Inconel 625 through the method of explosive welding. Explosively welded bimetal was subjected to the two separated heat treatment processes: stress relief annealing (at 620oC for 90 minutes) and normalizing (at 910oC for 30 minutes). In order to identify the microstructure of the joint and to investigate the influence of the heat treatment on it, the light and scanning electron microscope observations and microhardness analysis have been performed. In order to investigate the diffusion zone microstructure the scanning transmission electron microscope observation have been performed. It was stated that obtained joint has characteristic wavy-shape geometry with the presence of the melted zones and severe deformed grains of both joined materials. Strengthening of materials in joint zone was established with microhardness analysis. In both of the heat treatments the changes in the grain structure have been observed. The normalizing heat treatment has the most significant impact on the microstructure of the joint as well as the concentration of the chemical elements in the joint zone. It was reported that due to normalizing the diffusion zone has been formed together with precipitates in the joint zone

    The effects of the heat treatment on the microstructure of Inconel 625/steel bimetal joint obtained by explosive welding

    No full text
    In this investigation steel P355NH was successfully clad with Inconel 625 through the method of explosive welding. Explosively welded bimetal was subjected to the two separated heat treatment processes: stress relief annealing (at 620oC for 90 minutes) and normalizing (at 910oC for 30 minutes). In order to identify the microstructure of the joint and to investigate the influence of the heat treatment on it, the light and scanning electron microscope observations and microhardness analysis have been performed. In order to investigate the diffusion zone microstructure the scanning transmission electron microscope observation have been performed. It was stated that obtained joint has characteristic wavy-shape geometry with the presence of the melted zones and severe deformed grains of both joined materials. Strengthening of materials in joint zone was established with microhardness analysis. In both of the heat treatments the changes in the grain structure have been observed. The normalizing heat treatment has the most significant impact on the microstructure of the joint as well as the concentration of the chemical elements in the joint zone. It was reported that due to normalizing the diffusion zone has been formed together with precipitates in the joint zone

    Synthesis, physicochemical characterization, and antibacterial performance of silver-lactoferrin complexes.

    No full text
    Antibiotic-resistant bacteria pose one of the major threats to human health worldwide. The issue is fundamental in the case of chronic wound treatment. One of the latest trends to over-come the problem is the search for new antibacterial agents based on silver. Thus, the aim of this research was to synthesize the silver-lactoferrin complex as a new generation of substances for the treatment of infected wounds. Moreover, one of the tasks was to investigate the formation mechanisms of the respective complexes and the influence of different synthesis conditions on the features of final product. The batch-sorption study was performed by applying the Langmuir and Freun-dlich isotherm models for the process description. Characterization of the complexes was carried out by spectroscopy, spectrometry, and separation techniques, as well as with electron microscopy. Additionally, the biological properties of the complex were evaluated, i.e., the antibacterial activity against selected bacteria and the impact on L929 cell-line viability. The results indicate the formation of a heterogeneous silver–lactoferrin complex that comprises silver nanoparticles. The complex has higher antibacterial strength than both native bovine lactoferrin and Ag+, while being comparable to silver toxicity
    corecore