5 research outputs found

    Multispectral imaging for preclinical assessment of rheumatoid arthritis models

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune condition affecting multiple body systems. Murine models of RA are vital in progressing understanding of the disease. The severity of arthritis symptoms is currently assessed in vivo by observations and subjective scoring which are time-consuming and prone to bias and inaccuracy. The main aim of this thesis is to determine whether multispectral imaging of murine arthritis models has the potential to assess the severity of arthritis symptoms in vivo in an objective manner. Given that pathology can influence the optical properties of a tissue, changes may be detectable in the spectral response. Monte Carlo modelling of reflectance and transmittance for varying levels of blood volume fraction, blood oxygen saturation, and water percentage in the mouse paw tissue demonstrated spectral changes consistent with the reported/published physiological markers of arthritis. Subsequent reflectance and transmittance in vivo spectroscopy of the hind paw successfully detected significant spectral differences between normal and arthritic mice. Using a novel non-contact imaging system, multispectral reflectance and transmittance images were simultaneously collected, enabling investigation of arthritis symptoms at different anatomical paw locations. In a blind experiment, Principal Component (PC) analysis of four regions of the paw was successful in identifying all 6 arthritic mice in a total sample of 10. The first PC scores for the TNF dARE arthritis model were found to correlate significantly with bone erosion ratio results from microCT, histology scoring, and the manual scoring method. In a longitudinal study at 5, 7 and 9 weeks the PC scores identified changes in spectral responses at an early stage in arthritis development for the TNF dARE model, before clinical signs were manifest. Comparison of the multispectral image data with the Monte Carlo simulations suggest that in this study decreased oxygen saturation is likely to be the most significant factor differentiating arthritic mice from their normal littermates. The results of the experiments are indicative that multispectral imaging performs well as an assessor of arthritis for RA models and may outperform existing techniques. This has implications for better assessment of preclinical arthritis and hence for better experimental outcomes and improvement of animal welfare

    Phenotyping of ABCA4 Retinopathy by Machine Learning Analysis of Full-Field Electroretinography

    Get PDF
    PURPOSE: Biallelic pathogenic variants in ABCA4 are the commonest cause of monogenic retinal disease. The full-field electroretinogram (ERG) quantifies severity of retinal dysfunction. We explored application of machine learning in ERG interpretation and in genotype–phenotype correlations. METHODS: International standard ERGs in 597 cases of ABCA4 retinopathy were classified into three functional phenotypes by human experts: macular dysfunction alone (group 1), or with additional generalized cone dysfunction (group 2), or both cone and rod dysfunction (group 3). Algorithms were developed for automatic selection and measurement of ERG components and for classification of ERG phenotype. Elastic-net regression was used to quantify severity of specific ABCA4 variants based on effect on retinal function. RESULTS: Of the cohort, 57.6%, 7.4%, and 35.0% fell into groups 1, 2, and 3 respectively. Compared with human experts, automated classification showed overall accuracy of 91.8% (SE, 0.169), and 96.7%, 39.3%, and 93.8% for groups 1, 2, and 3. When groups 2 and 3 were combined, the average holdout group accuracy was 93.6% (SE, 0.142). A regression model yielded phenotypic severity scores for the 47 commonest ABCA4 variants. CONCLUSIONS: This study quantifies prevalence of phenotypic groups based on retinal function in a uniquely large single-center cohort of patients with electrophysiologically characterized ABCA4 retinopathy and shows applicability of machine learning. Novel regression-based analyses of ABCA4 variant severity could identify individuals predisposed to severe disease. Translational Relevance: Machine learning can yield meaningful classifications of ERG data, and data-driven scoring of genetic variants can identify patients likely to benefit most from future therapies
    corecore