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Abstract 

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune condition affecting multiple 

body systems. Murine models of RA are vital in progressing understanding of the disease. The 

severity of arthritis symptoms is currently assessed in vivo by observations and subjective 

scoring which are time-consuming and prone to bias and inaccuracy. 

 
The main aim of this thesis is to determine whether multispectral imaging of murine arthritis 

models has the potential to assess the severity of arthritis symptoms in vivo in an objective 

manner. Given that pathology can influence the optical properties of a tissue, changes may be 

detectable in the spectral response.  

 
Monte Carlo modelling of reflectance and transmittance for varying levels of blood volume 

fraction, blood oxygen saturation, and water percentage in the mouse paw tissue 

demonstrated spectral changes consistent with the reported/published physiological markers 

of arthritis. Subsequent reflectance and transmittance in vivo spectroscopy of the hind paw 

successfully detected significant spectral differences between normal and arthritic mice. Using 

a novel non-contact imaging system, multispectral reflectance and transmittance images were 

simultaneously collected, enabling investigation of arthritis symptoms at different anatomical 

paw locations. In a blind experiment, Principal Component (PC) analysis of four regions of the 

paw was successful in identifying all 6 arthritic mice in a total sample of 10. The first PC scores 

for the TNF dARE arthritis model were found to correlate significantly with bone erosion ratio 

results from microCT, histology scoring, and the manual scoring method. In a longitudinal study 

at 5, 7 and 9 weeks the PC scores identified changes in spectral responses at an early stage 

in arthritis development for the TNF dARE model, before clinical signs were manifest.  

 
Comparison of the multispectral image data with the Monte Carlo simulations suggest that in 

this study decreased oxygen saturation is likely to be the most significant factor differentiating 

arthritic mice from their normal littermates. 

 
The results of the experiments are indicative that multispectral imaging performs well as an 

assessor of arthritis for RA models and may outperform existing techniques. This has 

implications for better assessment of preclinical arthritis and hence for better experimental 

outcomes and improvement of animal welfare. 
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1 

1 Introduction 
 
This thesis reports the results of investigating the use of multispectral imaging (MI) for 

the assessment of mouse models of rheumatoid arthritis. A non-invasive imaging 

technology which allowed objective assessment of physiological changes could be 

very useful in extending the efficacy of in vivo studies by staging the development of 

arthritis symptoms more accurately. MI has several inherent advantages over 

alternative methods of in vivo imaging.  Visible and near-infrared (NIR) radiation is non-

ionising and non-damaging (providing the light intensity is kept within a certain limit). 

The equipment is generally relatively cheap and no extra clinical procedures are 

necessary such as the injections required for contrast enhancement. MI has good 

spatial and good spectral resolution, which is useful in the case of small and 

heterogeneous tissues like the mouse hind paw. The mouse hind paw is a thin tissue 

of approximately 2–3 mm depth making it suitable for both reflectance and 

transmission imaging regimes across the visible and NIR spectrum, as light should 

traverse the tissues relevant to the symptoms of joint inflammation. Spectral imaging 

gives information about physiological changes in the tissue which may precede the 

structural changes imaged by traditional imaging methods. Multispectral imaging could 

be useful in its own right but could also be potentially used as an adjunct to other optical 

imaging methods. 
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Aims  

 Assess whether arthritis causes detectable changes in the visible and NIR infrared 

region of the spectrum by modelling the observed changes in line with quantitative 

changes cited in literature.  

 Build a multispectral imaging system for the purpose of imaging mouse feet in the 

visible and NIR wavelengths.  

 Correlate spectral changes with other indicators of arthritis damage.  

 Establish the credentials of this technique as a possibility for monitoring mouse 

health. 
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2 Background  
 
This chapter presents the background material covering the following areas of this 

interdisciplinary work: The medical background, pathophysiology of rheumatoid 

arthritis (RA), together with the changes induced by disease that impact the optical 

properties of tissue (section 2.1 and 2.2). Current methods of imaging utilized in clinical 

and research settings are outlined and used to set developing optical imaging 

modalities in context (section 2.3). Mouse models of RA are introduced and described 

in terms of their role in RA research and the methods used to assess mouse arthritis 

symptoms (sections 2.4 and 2.5). The physics background introduces the basic 

concepts of light interaction with tissue and the modelling techniques used for 

simulation of radiative transfer (section 2.6). Finally, an introduction to multispectral 

imaging is provided (section 2.7). 

2.1 Rheumatoid Arthritis Pathology 

The following section gives background on the development of RA, the timeline of the 

symptoms of the disease, and the pathophysiology of disease progression.     

2.1.1 The Immune System and Autoimmune Disease 

Rheumatoid arthritis is believed to be an autoimmune disease, arising from 

deregulation of the hosts immune defence system where it mistakes components of 

the body’s own tissues for a foreign antigen and attempts to attack and eliminate it as 

it would for an invading pathogen. The inappropriate recognition of the host tissues 

causes an inflammatory response that damages the affected area progressively over 

time, often irreparably, and continues throughout the lifetime of the host.  
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The mammalian immune system comprises the innate immune system and the 

adaptive immune system. The innate immune system responds to a set number of 

highly conserved pathogenic moieties, whereas the adaptive immune system is flexible 

and has the potential to recognise and respond to any foreign antigen. It is essential 

for resistance to infection and is responsible for immune memory. In the case of 

infection, specialised immune cells of the adaptive immune system coordinate a 

pathogen-specific response by recognising foreign molecules present on the surface 

of invading pathogens and initiating an inflammatory response to destroy them. In 

rheumatoid arthritis, this protective process turns against the host, inappropriately 

recognising and attacking the native tissues.  

 
Developing adaptive immune cells undergo a random genetic mutation process that 

allows them to recognise a potentially infinite array of molecules, including ‘self’ 

molecules present in the hosts own body. Normally, these self-recognising cells are 

deactivated or destroyed in the developmental process, but in the case of autoimmune 

disease, they escape detection and become activated, driving an inflammatory 

response against the host’s own tissues (1).  

2.1.2 Clinical Presentation and Progression of Rheumatoid Arthritis 

Rheumatoid arthritis is predominantly a disease of the joints. Early RA is characterised 

by pain, swelling, redness and stiffness in one or several articular joints, which is 

generally worse in the mornings or following periods of rest. RA most often arises in 

middle age and has a noticeable gender bias towards women with 75% of sufferers 

being female (2).  Diagnosis follows a series of clinical tests and physical examinations 

where the affected joints will be examined individually by clinicians and blood tests will 
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be taken looking for markers of inflammation. The early symptoms do not guarantee 

full development of RA. In approximately 50% of cases, the symptoms will 

spontaneously resolve (3). However, for the patients who go on to develop RA, early 

diagnosis is an important factor in the successful symptom management and 

treatment, and therefore highly influential in patient prognosis (4). Whilst it cannot 

currently be cured, targeting early disease with disease modifying anti-rheumatic drugs 

(DMARDs) and biologics is known to slow the progression of joint damage over time. 

Other treatments focus on management of pain and inflammation, with steroids or non-

steroidal anti-inflammatory drugs (NSAIDs).  

2.1.3 The Structure of the Synovial Joint 

Joints allow flexibility and movement of the skeleton. Some joints such as those in the 

spine or skull are semi-flexible or fixed, but the majority of joints are formed where two 

or more bones meet and articulate to allow for mobility and motion. These are known 

as synovial joints (see Figure 1), eponymously named for the synovial cells which line 

the joint capsule, forming a tough, fibrous membrane enclosing the joint space that 

produces synovial fluid. The two ends of the bone are covered in smooth cartilage 

presenting a low friction interface, lubricated by the fluid that fills the cavity. Figure 1 

presents the general structure of the synovial joint.  

2.1.4 The Development and Pathophysiology of Rheumatoid Arthritis 

In early RA, inflammation begins in the synovial membrane. The synovial cells normally 

form a thin layer one to three cells thick and function as a nutrient source for the 

avascular cartilage tissue via the production of synovial joint fluid. However, in RA, 

proliferation of the synovial cells and infiltration of activated immune cells into the joint 
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Figure 1: Schematic diagram of the typical structure of a synovial joint.  The articular capsule surrounds the joint 
but in the diagram has been cut in half to show the synovial tissue lining the capsule and the cartilage covered 
articulating surfaces of the bones. Arrows indicate different tissue types.  

 
tissues causes hyperplasia of the membrane, thickening the synovium by around 10 

times (5). Outwardly, symptoms of pain, swelling and redness occur in affected joints. 

During the inflammatory response the synovial fluid may increase in volume, decrease 

in viscosity, and vastly increase in immune cell count. However, the cartilage and bone 

typically remain intact through the early stages of disease rendering radiographic 

imaging negative of signs of arthritis (6). At this early stage one or several joints can 

be involved, usually the small joints of the hands and feet.  

 
Persistent synovitis, or synovial inflammation, of over 12 weeks duration is known to 

be the strongest predictor of full rheumatoid arthritis development (7). As the early 

stages of disease pathology progress, high metabolic demands of the hyperplastic 

synovium and immune cell infiltrate lower the oxygen tension in the joint triggering 

angiogenic processes to form new vasculature. Synovial cells continue to proliferate 
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and assume a more aggressive fibroblastic phenotype (8). The thickened synovium, 

also known as the pannus, begins to invade the joint space and destroy the underlying 

cartilage and bone (see Figure 2). Consequently, the joint space narrows and mobility 

can be reduced. Pain and swelling may persist and patients may experience general 

malaise, weakness, muscle atrophy, and morning joint stiffness that lasts for several 

hours. Often joint involvement is symmetric across the body.  

 
The symptoms of joint inflammation continue as the disease progresses, often arising 

in episodes of acute flare-ups where joints will temporarily become more swollen 

before symptoms abate in a period of remission. The underlying damage to the hard 

tissues of the joints progresses both through and between these episodes and the 

joints can become progressively more deformed, limiting the range of movement. 

Erosion of periarticular bone is a typical feature observed in advanced rheumatoid 

arthritis patients by radiographic imaging methods. In a healthy individual, bone 

remodelling is a tightly regulated process which preserves bone integrity over time. 

Cells which form bone (osteoblasts) and cells which resorb bone (osteoclasts) are 

responsible for maintaining bone homeostasis. There is a known regulative association 

between the immune system and bone remodelling (9), a process which becomes 

disrupted in RA and tipped in favour of bone erosion. Inflammatory processes have a 

role in triggering bone erosion through osteoclast activation. Synovitis as well as 

osteitis correlate with the degree of radiographic bone erosion (10,11). Bone erosions 

are most observed at the interface between the synovium and the bone, where 

osteoclasts are known to gather. Bone erosion is an important feature in RA monitoring 

because increased erosion results in a more severe disease course. In the later stages 

of the disease, permanent damage to the bone structure and cartilage can lead to loss 



 8

of joint function. Figure 2 shows a representation of the changes which occur in the 

joint during RA. 

 

 

Figure 2: Schematic diagram showing the morphologic changes which typically occur with rheumatoid arthritis. The 
rheumatoid joint on the right of the image displays hypertrophic expansion of the synovial lining, along with bone 
and cartilage erosion and increased turbidity of the synovial fluid. These RA symptoms typically occur in mid to late 
stage RA.  

 
The chronic inflammation associated with RA can also lead to extra-articular 

manifestations of the disease. Many of the body’s systems can be affected including 

the pulmonary system, the circulatory system, and the skin and eyes. These extra-

articular manifestations are ultimately the cause of increased mortality and a major 

predictor of decreased life span (12).   

2.2 Optically Relevant Variation in Rheumatoid Arthritis 

Inflammatory conditions in the rheumatoid joint are thought to change the 

concentrations of biological chromophores present in the articular and periarticular 

tissues. Evidence for the changes in concentration of biological chromophores is 

discussed below.  
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2.2.1 Hypoxia 

Hypoxia refers to the state of insufficient oxygenation in the tissues and is known to 

occur in conjunction with inflammation. In the rheumatoid joint, the high metabolic 

demands of immune cell influx and the phenotypically altered, hypertrophic synovium 

is known to result in a decrease of dissolved oxygen in the joint tissues (13). Oxygen 

probes in the form of spectrometers coupled to optically active chemical sensors can 

directly measure the partial pressure of dissolved oxygen in mmHg. Oxygen partial 

pressure has been measured as 63mmHg in healthy finger joints compared to 27 

mmHg in RA (14) and has more recently been measured as 22.5mmHg in the affected 

synovium (15). Crucially, the partial pressure of oxygen was shown to correlate with 

markers of inflammation (15), indicating that hypoxia may correlate with disease 

severity. This property of RA is relevant to optical imaging because hypoxia in the 

tissue is thought to reduce the ratio of oxygenated haemoglobin to deoxygenated 

haemoglobin, two biological chromophores with differing absorption spectra (described 

in section 2.6.3.2). However, whilst low partial pressure of oxygen will induce lower 

haemoglobin oxygen saturation in the surrounding tissue, exact values of haemoglobin 

oxygen saturation are difficult to measure in vivo. Blood oxygen level dependent 

(BOLD) MRI exploits the differing magnetic properties of haemoglobin in its 

oxygenated and deoxygenated forms and shows decreased signal in rheumatoid joints 

indicative of decreased oxygenation in the microvasculature of rabbit models of arthritis 

(16). In modelling the rheumatoid finger joint Milanic et al. (17) used values of 95% 

saturation for the healthy joint and 48% saturation for the rheumatoid synovium, which 

correspond to the oxygen partial pressure values mentioned above according to the 

haemoglobin saturation curve. Microscopic multispectral imaging of tendon 
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microvasculature in a model of murine RA has measured haemoglobin oxygen 

saturation as 94.8 ± 7.0 % for healthy mice and 84.0 ± 13.5 % for inflamed (18). Overall 

there is reasonable evidence to suggest that hypoxia occurs in the rheumatoid joint 

and that the haemoglobin oxygen saturation of the local tissues reduces, giving it the 

potential to change the bulk optical properties of rheumatoid tissue.   

2.2.2 Blood Volume Fraction 

Angiogenesis in the rheumatoid synovium happens in response to inducible factors 

which are released under hypoxic conditions. There is a marked increase in the 

expression of cellular factors related to hypoxia (19), such as Hypoxia Inducible Factor 

(HIF-1), which activates genes associated with the formation of new vasculature (20). 

In RA, the new vasculature fails to restore normoxia and the joint environment remains 

hypoxic (13). The formation of new blood vessels brings increased blood flow to the 

tissue, therefore increasing optical absorption. Biopsy of synovial tissue shows a high 

proportion of vessels expressing neovascular markers, which is evident even in early 

disease (21). The degree of synovial vascularity is evidently important in disease 

pathogenesis as Power Doppler assessment of the synovial vascularity correlates well 

with radiographic damage (22). Using microCT to measure vascularisation in the knee 

joints of human TNF transgenic mice perfused with lead containing contrast agent, the 

vessel volume per tissue volume was seen to increase in 4 concentric, spherical 

volumes of interest surrounding the synovial cavity, excepting the 1st ROI containing 

the area immediately around the joint (23). The results of this paper by Gayetskyy et 

al. suggest that blood volume fraction (BVF) increases in the joint tissue and 

periarticular tissue due to angiogenesis by approximately 60 – 70%, although the 

immediate synovial area can be seen to decrease. This is hypothesised to be because 
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although vascularisation increases overall, the healthy synovium has better 

vascularisation which decreases as the synovium hypertrophies, contributing to 

hypoxia.  

2.2.3 Oedema 

Rheumatoid arthritis symptoms result in local swelling of the joints. In inflammatory 

conditions, the endothelial barrier of local blood vessels becomes disrupted and 

vasodilation increases blood flow to the tissue, increasing the outflux of fluid and the 

extravasation of immune cells into the interstitial space (24). In the majority of mouse 

models of RA, some form of oedema is evident in the paws as an increase in the 

volume with symptom development. Given that oedema represents an increase in the 

tissue volume of water, which has increased absorption coefficients in the longer NIR 

wavelengths, it is potentially detectable by optical imaging methods. In a paper by 

Perilli et al. measuring soft tissue volume increase with microCT, collagen antibody-

induced arthritis (CAIA) mice have an average paw volume increase of 36% (25).  

2.3 Imaging of Rheumatoid Arthritis  

A window of opportunity occurs in RA for the targeting of novel drugs which slow the 

early progression of disease. With the development of these drugs and the increasing 

emphasis on early diagnosis, traditional clinical imaging methods are becoming 

inadequate for detection of early pathology. This has led to increasing interest in the 

development of novel imaging modalities targeting early disease. Outlined below are 

some of the clinical techniques for imaging RA pathology, along with more recently 

developed techniques aimed at detecting changes in the developmental stages.  
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2.3.1 Radiographic Imaging 

Imaging has proved a useful addition to clinical examination in rheumatoid arthritis 

diagnosis and management, improving the accuracy of assessment of inflammation 

(26). Planar radiographic imaging is commonly used in the assessment of RA in the 

hands and feet. It is cheap, quick, and can provide longitudinal imaging of the 

progression of bone erosion and joint space narrowing (figure 3a). Computed 

Tomography (CT) is thought to be the most sensitive imaging technique for detection 

of bone erosions but is rarely in clinical use (27). One crucial drawback of radiographic 

imaging, however, is that early disease is characterised by synovitis before bone 

erosion occurs which cannot be detected by x-ray imaging. Deformation of the hard 

tissue is mostly confined to the later stages of disease and therefore radiographic 

imaging is rarely informative in the diagnostic and early stages of RA. The increasing 

focus on early diagnosis and treatment has lead to greater use of alternative imaging 

techniques in clinical assessment. Magnetic resonance imaging (MRI) and ultrasound 

sonography (US) and are used increasingly in clinical practice to assess soft tissue 

morphology.  

2.3.2 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI), where images are taken by exploiting the 

magnetic properties of hydrogen atoms in the tissue, is also able to detect the soft 

tissue changes occurring in early RA. Contrast-enhanced MRI (figure 3b) is able to 

detect all of the physiological changes that can be seen in US, but in addition can 

detect bone marrow oedema, a symptom of RA known to be the strongest predictor of 

radiographic disease progression (10). Disadvantages associated with MRI are low 

availability of facilities and long waiting times, high cost of imaging, and 
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contraindications of imaging due to the magnetic field. The imaging resolution is 

comparatively low when compared to US and administration of contrast agent is 

generally required for distinction of the synovial tissue from the joint space (28).  

2.3.3 Ultrasound Imaging 

Ultrasound sonography (US) is able to form images of soft tissues where there is an 

acoustic window into the tissue (figure 3c). The images are formed by the variation in 

the reflections of ultrasound waves from the different tissues types, providing more 

information about soft tissue pathologies than conventional radiographic imaging. 

Ultrasound imaging of the joints can detect synovial hypertrophy, tenosynovitis, bone 

erosion, and cartilage thinning. It can also be used for guiding invasive procedures 

such as biopsy and injections that are often a part of diagnosis and treatment. US is 

relatively low cost, non-ionising, and informative. However, it is disadvantaged by low 

availability of ultrasound operators, inter-operator variability, inaccessibility of imaging 

to tissue beyond the bone, and difficulty with longitudinal imaging assessment. Scoring 

methods for assessment of symptoms have been introduced to reduce inter-operator 

variability with some success (29). Power Doppler imaging, where Doppler signals in 

the ultrasound are amplified for the detection of moving material, is able to detect 

increased vascularisation in the inflamed synovium even in joints deemed in remission 

by clinical examination (30).  

2.3.4 Nuclear Imaging  

Alternative imaging techniques have been investigated in the imaging of early and 

established rheumatoid arthritis but are currently rarely in clinical use. Nuclear imaging 

techniques like bone scintigraphy, single-photon emission computed tomography 

(SPECT) and positron emission tomography (PET), produce images by targeting 
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radiotracers to molecular markers associated with inflammation in the joints, but suffer 

from high cost, low availability, low resolution, and ionising radiation. Research 

continues to develop new radioisotopes targeting novel cellular markers of 

inflammatory activity in order to increase its viability as a clinical imaging method 

(31,32).  

2.3.5 Optical Imaging 

In a research environment, several experimental optical imaging techniques have been 

applied to the problem of imaging inflammation in rheumatic joints. The most common 

approach relates to the imaging of non-specific near-infrared fluorescent (NIRF) dye, 

indocyanine green, for the detection of synovitis through increased NIRF concentration 

in areas of ‘leaky’ blood vessels in inflamed tissues (figure 3d). Methods of imaging 

with NIRF dyes have been found to be relatively as successful as MRI and US in the 

detection of synovitis (33,34), but this finding is contested (35). Currently, indocyanine 

green is the only NIRF dye approved for clinical use by the Food and Drug 

Administration in the United States (36).   

Thermography, far-infrared imaging for measurement of surface temperature, detects 

a statistically significant difference between joint temperatures in normal, RA, and 

osteoarthritis (OA) patients (37), but may struggle in the recognition of mild arthritis 

symptoms and in small joints (38). 

Photoacoustic tomography (PAT) takes advantage of the photoacoustic effect to map 

the optical absorption properties of a tissue with higher resolution than is achievable in 

diffuse optical tomography (DOT). In the preliminary assessment of osteoarthritis, PAT 

was able to detect increased absorption in the joint space of arthritic fingers (39).    
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Other optically based imaging approaches have included optical spectral transmission 

(OST), where the transmittance of two or more wavelengths of light are measured and 

analysed according to how they vary over time or spatially, and diffuse optical imaging 

(DOI) where multiple light measurements are taken at varying distances and the 

properties of the tissue are reconstructed either as a static measurement or how they 

vary over time. Theoretically, the symptoms of arthritis cause changes in the spectral 

transmission profile of a joint (17). Significant differences were found between healthy 

and inflamed joints in a system measuring the spectral transmission profile of proximal 

interphalangeal (PIP) joints in combination with an inflatable pressure cuff in a simple 

optical spectral transmission approach (40–42).  

 
Other methods attempt to reconstruct the optical properties of the tissue to give an 

estimation of the distribution of scattering and absorbing distribution of the finger joint. 

Due to cross-talk between scatter and absorption in biological tissue, this is a non-

trivial problem. The first attempt to reconstruct optical properties of the finger joint was 

a sagittal laser optical tomographic (SLOT) reconstruction where a single wavelength 

laser was directed at discrete locations along the finger and the transmission profile of 

light measured on the other side. Applying non-linear error minimisation to an iterative 

forward model reconstructed an estimation of the optical properties in finger joints of 

healthy volunteers and patients with RA. They showed a characteristic pattern of 

scatter and absorption changes. In healthy fingers, a dip in scatter and absorption 

values occurred in the central region of the joint, whereas, in inflamed fingers the 

decrease of scatter and absorption values in the joint space was much less 

pronounced (43–45). More recent continuous-wave imaging methods have included 
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multispectral diffuse optical tomography which aims to use the difference in spectral 

data to separate the contributions of scattering and absorption (46,47).  

 

 

Figure 3: Examples images for clinical and experimental methods of imaging the effects of rheumatoid arthritis in 
the hand joints. Figures a-e depict x-ray (48), MRI (49), ultrasound (50), near-infrared fluorescence imaging (51) 
and frequency-domain diffuse optical tomography (52) respectively, reproduced from the cited sources. 

 
Frequency-domain diffuse optical tomographic (FD-DOT) techniques have 

reconstructed optical properties of human PIP joints, both affected by and unaffected 

by rheumatoid arthritis. The two groups were found to have statistically significant 

differences in particular features extracted from the reconstructions. With additional 



 17 

tools for feature extraction and computer aided analysis, the FD-DOT images can 

provide classification of RA and healthy joints with similar sensitivities and specificities 

to MRI and ultrasound (53). Figure 3e displays the typical features in a tomographic 

optical reconstruction where there is an increase of scatter and absorption in the joint 

space upon development of RA. The low scatter and absorption in the centre of the 

joint in a healthy finger is thought to be due to the low scatter and absorption 

coefficients of healthy synovial fluid and cartilage. In rheumatoid arthritis the 

reconstructed scattering coefficients of the joint space increase, thought to be due to 

thicker synovium and immune cell infiltrate in the fluid. The reconstructed absorption 

coefficients increase, thought to be due to hemodynamic changes in the synovial lining 

(54). Whilst FD-DOT avoids the requirement for contrast agents and ionising radiation, 

the equipment is expensive and imaging results are difficult to interpret. It is not yet 

clear whether these methods can distinguish early arthritis symptoms.  

2.4 Mouse Models in Rheumatoid Arthritis Research  

The aetiology of rheumatoid arthritis is difficult to study because patients only present 

with symptoms once the disease pathways are established. Likewise, studying the 

progression of the disease requires tissue samples from patients which are painful or 

impractical to obtain. Cell culture and computational modelling are a vital part of 

research but cannot completely replicate the multi-tissue effects of disease in a whole 

organism. Animal models have therefore been developed to aid in research of the 

condition. Whilst none of the animal models are a perfect replica of RA, they have 

collectively been used to further the knowledge of the pathological immune processes 

underlying the disease and in the development of new types of drugs which are now 

an indispensable part of RA treatment.  
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Mouse models of RA can simulate aspects of the disease that are of interest to 

researchers. The breadth of the factors involved in the development of RA has allowed 

the development of a variety of murine models. These can be broadly categorised as 

either genetic or induced depending on whether the symptoms were introduced 

through genetic modifications, or though exposure to inflammation-inducing serum 

factors. They present with symptoms which include evident inflammation and swelling 

in the joints of the limbs and paws, as well as erosion of the bone and cartilage in some 

models. Common murine models which have been included during this research 

project have been detailed below. 

 
Genetic mouse models have modifications to their DNA which cause disease 

symptoms to arise spontaneously. Most target the regulation of inflammatory cytokines 

which are known to be important in RA development and progression. Inducible 

models involve the introduction of inflammation causing agents into a genetically 

normal (wildtype) mouse strain, or otherwise non-arthritic genetically-altered mouse. 

In this case, symptoms tend to peak over the course of several weeks, then they may 

abate or perpetuate depending on the nature of model (55).   

2.4.1 TNF dARE  

Tumour necrosis factor alpha (TNF-α) is one of the dominant inflammatory cytokines 

implicated in progression of pathology in rheumatoid joints. It can be expressed by a 

variety of cells in response to acute inflammatory signals (56). In a resting cell, levels 

of TNF-α are reduced by the ARE (AU-rich element) regulatory region at the 3’ end of 

the mRNA transcript. The presence of the ARE region causes degradation of the 

transcripts and consequent downregulation of TNF-α. Upon activation of the cell with 
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inflammatory signals, the mRNA transcripts are stabilised and consequently translated 

leading to a rapid upswing in the expression of the protein. In relation to RA, the 

pathological roles of TNF-α include upregulation of osteoclast activity initiating bone 

erosion and upregulation of a melange of pro-inflammatory cytokines leading to the 

recruitment of lymphocytes to the synovial tissue (57). 

 
Mechanism: In the TNF dARE mouse, the ARE region of the gene is deleted causing 

chronic upregulation of TNF-α (58). This mouse model, and other models which 

upregulate TNF-α, have highlighted the importance of the TNF-α cytokine in disease 

and led to the successful discovery of several types of TNF-α targeted drug treatments, 

which are now a mainstay of RA treatment (59).  

 
Symptoms and appearance: In the heterozygous TNF dARE mouse, development of 

chronic polyarthritis and irritable bowel disease begin at approximately 3 weeks of age, 

overt arthritis around 6 – 8 weeks of age, and by 16 weeks typically nearly all joints are 

affected (55,58). As symptoms develop discolouration of the paws is evident as they 

take on a ‘brown’ appearance (see Figure 4). With advanced symptoms, there is 

generally visible evidence of deformation of the joints and the heels and wrists can 

bow assuming a characteristic spoon shape. There is usually little measurable swelling 

of the footpad, however the toes generally appear thicker than in the normal control. 

When the mouse is picked up by the scruff so that the feet can be examined, the toes 

tend to remain bunched rather than spreading out. Peculiar to this mouse model is 

development of irritable bowel disease analogous to Crohn’s disease, resulting in a 

tendency to be underweight compared to control (wildtype) littermates.  
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Figure 4: Photographs showing a single case of a TNF dARE hind paw affected by symptoms of arthritis and a 
single case of a normal mouse foot. 

 

2.4.2 K/BxN Serum Transfer 

The K/BxN serum transfer (ST) model is an inducible mouse model, where pathology 

is initiated by the transfer of auto-antibody containing serum obtained from the K/BxN 

transgenic mouse. Transgenic K/BxN mice are a genetic mouse model which develop 

a spontaneous form of symmetrical, deforming polyarthritis, highly reminiscent of 

rheumatoid arthritis, around 4 – 5 weeks of age (60). The intentional target of the KRN 

T-cell receptor (TCR) is a form of bovine RNase, but crucially for the arthritis model the 

transgenic KRN receptor also recognises epitopes of glucose-6-phosphate isomerase 

(GPI) when displayed by the major histocompatibility complex (MHC) class II molecule 

I-Ag7. GPI is a ubiquitously expressed enzyme involved in the glycolytic pathway. 

Lymphocyte recognition results in the activation of B cells, releasing autoantibodies 

specific for GPI. The pathogenesis behind the joint-specific inflammation is not entirely 

clear but appears to involve recruitment of factors of the innate immune system (61).  

 
A single injection (intravenous or intraperitoneal) of serum from symptomatic 

transgenic K/BxN mice into a naïve wild-type mouse results in the development of 

arthritis symptoms within 2 days (62). The main difference between the transgenic 

K/BxN mouse and the serum transfer K/BxN is the transient nature of the disease 

symptoms which resolve after approximately 15 days. These mice develop a 



 21 

hyperplastic synovium and show cellular infiltration into the joint as well as damage to 

the cartilage. They are generally used in studying the innate immune response since 

the adaptive immune response does not become involved.  

 
Mechanism: The anti-GPI autoantibodies introduced during the serum transfer have 

been found to locate to the joints within minutes. Subsequent formation of immune 

complexes activate complement pathways  and humoral inflammatory processes 

resulting in a self-limiting joint-specific inflammatory process (63).  

 
Symptoms and appearance: Paws can appear swollen and red, often localised to 

areas such as the heel or single digits. Inflammation is more common in the paws and 

ankles than the hips and tends to be symmetrical. Symptoms peak around 5 days after 

serum transfer after which time visible evidence (clinical symptoms) begin to diminish. 

After 15-21 days, clinical symptoms have usually abated although the effects of 

cartilage and bone damage may still be evident (61,63).  

2.4.3 Collagen Induced Arthritis (CIA) 

CIA mice are considered the gold standard for research because the method of 

induction is the most analogous to autoimmune induction in humans. It is an induced 

form of polyarthritis where mice are inoculated with heterologous type II collagen, a 

principal component of articular cartilage, mixed with complete Freund’s adjuvant, an 

immunopotentiator used to provoke an immune reaction. The consequent immune 

response occurs around 20-30 days later displaying many of the same pathological 

symptoms as observed in rheumatoid arthritis. The development of arthritis in the CIA 

model is dependent on the MHC haplotype of the mice, therefore the main mouse 

strain used for the CIA model is DBA/1, due to the expression of H-2q MHC molecules. 
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Symptoms can also be induced in other mouse strains but different protocols are 

required and there are lower rates of successful symptom induction. CIA mice tend to 

have symmetric joint involvement, synovitis, cartilage and bone erosion, and cellular 

infiltrate in the joint (64).  

 
Mechanism: Induction of disease is mainly T-cell dependent (although a weaker form 

of pathology can be introduced though CIA on a recombinant activation gene (RAG) -

1 deficient background (65)), but the mechanism of pathology is due to the collagen 

autoantibodies which bind to native collagen in the joints and induce an inflammatory 

response (66).  

 
Symptoms and appearance: In terms of appearance, CIA mice display similar 

symptoms to K/BxN serum transfer mice where they have red, swollen joints. Joint 

deformity is also observed (see Figure 5).  

 

 

Figure 5: Increasing severity of CIA symptoms in a mouse front paw. Reproduced from Hawkins et al (67). 

 

2.5 Assessment of Mouse Model Disease Symptoms  

Mouse model symptom characterisation is required over the course of an experiment 

to observe the progress of disease against the experimental hypothesis and also to 

monitor the mouse’s general health.  Pain management measures may be introduced 
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if the disease is deemed to exceed a critical threshold, and in severely affected cases, 

will elicit a humane endpoint. Currently, assessment methods of live mice mainly rely 

on a clinical assessment where researchers manually examine and score mice for 

indications of arthritis. Various imaging methods have been applied to the imaging of 

mouse arthritis models (see section 2.5.1.2), but are not widely used in routine 

symptom assessment due to the expense, expertise, and added experimental 

procedure necessary. In most cases, culling the mouse and excising tissues is 

necessary for a more accurate assessment of the arthritis progression.  

2.5.1 In vivo Assessment of Murine Disease  

2.5.1.1 Scoring System  

The scoring system currently used to assess the severity of the symptoms in arthritic 

mice is based on a number of behavioural and physical observations. Figure 6 shows 

the scoring sheet that is used for assessment of all arthritis models at the University of 

Birmingham. The scoring sheet was designed initially in 2012 by Dr Amy Naylor based 

on discussions with researchers using arthritis models at the Kennedy institute of 

Rheumatology. Since that time, it has been adapted to better capture welfare 

parameters and clinical symptoms through consultation with researchers, animal 

technicians and veterinary surgeons at the University of Birmingham.  

 
The mice are scored for a series of physical traits relating to their health and symptoms 

of arthritis including their gait, their behaviour around littermates, mouse ‘grimace’ (68), 

and the appearance of their paws. The mouse is picked up in a ‘scruff’ and held supine 

so that all four paws can be examined and scored for swelling, deformity, and 

discolouration.  
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Figure 6: The complete scoring form used to monitor mouse models of arthritis at the University of Birmingham. 
The form includes a section where the paws of the mouse are scored by visual assessment for traits such as 
swelling, discolouration and deformity. 

 
 
This method of scoring is entirely manual, time consuming, and highly reliant upon the 

experience of the assessor. The data collected are both superficial and subjective in 

nature and prone to conformation bias where the mouse is known to be arthritic (69). 
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Depending on the nature of the symptoms, it can be supplemented by quantitative 

physical measurements such as mouse weight, grip strength, paw thickness, paw 

volume, and ankle thickness, but such pathological changes are often dependent on 

model of RA.  

 

2.5.1.2 In vivo Imaging Based Assessment  

Specialised small animal imaging systems exist for many of the imaging methods 

commonly applied to humans. Most of these methods have been applied to small 

animal models of RA in a research environment, to see how efficiently they detect 

inflammation.  

 
MicroSPECT and MicroPET 

Nuclear imaging techniques microSPECT and microPET are used comparatively more 

often in the imaging of small animal models of rheumatoid arthritis (Figure 7a). Novel 

radiotracers have been developed and tested for efficacy of arthritis detection in a 

variety of mouse models using microSPECT imaging, often imaged in combination with 

microCT for improved anatomic localisation. Targets including proteoglycans (70), 

macrophage mannose receptors (71),  apoptotic cells (72), fibroblast-like synoviocytes 

(73,74), and integrin αvβ3 (74), have all shown correlation with arthritis symptoms. 

Tracers aiming to quantify pathological bone destruction correlated with alternate 

measures of bone destruction (75),  tracers targeting cell proliferation saw advanced 

uptake with mild clinical symptoms in K/BxN serum transfer mice (76), and targeting 

T-cell activation markers correlated with arthritis symptoms (77). Specialised nuclear 

imaging techniques achieve a resolution of approximately 1mm3 and have proved able 

to image several of the molecular events associated with development of symptoms in 
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rheumatoid arthritis models. However, as in clinical imaging, the use of nuclear imaging 

is restricted by the expense of the imaging equipment, the inconvenience of tracer 

preparation, and the difficulty in translation to clinical imaging due to regulatory issues 

(78).  Compared to optical molecular imaging techniques, its advantage is the absence 

of depth-dependent photon attenuation and tissue scattering.  

 
MicroMRI 

Specialised small animal microMRI systems have also been applied to the imaging of 

RA models, to image morphological changes occurring in both the soft and hard 

tissues (Figure 7b). The small scale of the joints can be problematic, but symptoms 

like synovial fibroplasia, oedema, joint effusion, and bone erosion can potentially be 

defined. Often, contrast agents such as gadolinium or ultrasmall superparamagnetic 

iron oxide (USPIO) particles are employed to help delineate target tissues. Using 

contrast agents, metrics of MR imaging have been found to correlate with classic 

inflammatory parameters and histologic signs of arthritis (79). Longitudinal assessment 

of inflammation and bone erosion is possible (80) and early signs of disease can be 

detected (81). USPIO particles have been successfully targeted to macrophages 

(82,83) and T-cells (84) and using synovial volume to facilitate drug intervention was 

found to reduce variability of outcome in treatment intervention experiments compared 

to age (80). As with nuclear imaging techniques, the main disadvantage of microMRI 

is the expense of the imaging equipment.   

 
NIRF and Bioluminescence Imaging  

Technology for in vivo optical molecular imaging techniques involving the injection of 

fluorescent probes, or the generation of bioluminescence expressing cells, has 
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become more available and more common in the past decade and thus is now used 

more regularly in experiments. Several methods have been attempted in visualising 

arthritis symptoms. Like in humans, non-specific near-infrared fluorescence (NIRF) 

dyes, show significantly more signal in joints affected by arthritis (85,86) due to 

naturally ‘leaky’ blood vessels in inflammatory regions (Figure 7c). However, for most 

fluorescence imaging in RA models, probes are targeted to molecular markers relating 

to the inflammatory processes to measure specific molecular responses.  

 
In testing a Matrix Metalloproteinase (MMP)-3 targeted probe on CIA mice, significantly 

higher NIRF signal was found in CIA mouse hind limb joints than in their littermate 

controls before any clinical signs of disease were visible (87). This molecular imaging 

probe has proved capable of monitoring drug responses (88). ‘Smart’ probes activated 

by target proteases have also been trialled in monitoring therapeutic drug response 

(89). A folate targeted probe has been used in the K/BxN mouse model to elucidate 

macrophage activity in the joints (90), and to the F4/80 antigen on the surfaces of 

macrophages in adjuvant induced arthritis (AIA) mice (91). More recently, 

commercially available NIRF ‘smart’ probes cleaved and activated by proteases, 

neutrophil elastase, MMP’s, and cathepsin K were imaged and the intensity shown to 

significantly correlate with manual scoring and histology scores, and can be delivered 

in tandem due to separable emission spectra (92). 

 
Molecular imaging is undoubtedly a valuable tool in RA research, offering the ability to 

monitor the localisation and relative intensity of cellular activity in vivo. However, it is 

disadvantaged by the need for expensive equipment, targeted probes, anaesthetics, 

and other imaging concerns such as low resolution compared to alternative 
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techniques, around 5mm compared to PET 2mm and MRI 0.1mm (93). It does however 

have short imaging times compared to scintigraphic methods (91).  

 
Non-Contrast Enhanced Optical Imaging 

Several alternative optical imaging methods not requiring contrast enhancement have 

been trialled on animal models of rheumatoid arthritis for symptom assessment. Cross 

polarisation colour (CPC) imaging and laser speckle contrast of the hind paws of AIA 

mice showed correlation with histological results (94). Multi-wavelength time-resolved 

diffuse optical spectroscopy (TR-DOS), was used to estimate Hb, HbO2 and, with the 

aid of dynamic-contrast enhancement, blood flow to the knee joint of an RA model 

rabbit finding trends towards decreased oxygenation and significantly larger blood flow 

in the arthritic measurements (95). Thermal imaging has also found significant 

differences in the surface temperature of arthritic paws compared to normal paws in 

CIA mice (96)  and in AIA rats (97).  

 
Ultrasound and Photoacoustic Imaging 

Alternative methods of imaging applied to small animals are comparatively rare. 

Despite its increasing clinical usage, literature on the ultrasound (US) imaging of small 

animal models of RA (Figure 7d) is relatively sparse. The joint space volume and power 

doppler volume calculated from US images has been found to correlate with synovial 

volume as calculated from contrast-enhanced MRI in TNF transgenic mice (98), and 

doppler US score has been found to correlate with histological and clinical scoring in 

CIA mice (99). Photoacoustic imaging has been experimentally applied to the imaging 

of small animal joints. Enhancement of signal was found in arthritic rats compared to 

normal controls, indicating an increase of blood flow and neovascularisation in the joint 
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(100). In rat tail joints, significant differences in optical absorption were found following 

carrageen injection to induce arthritis (101). Contrast agents have also been 

experimentally investigated for photoacoustic imaging of RA models. Gold nanorods 

improved the imaging of inflammation in CIA mice (102) and more recently, significant 

differences were found between arthritic models and controls using multispectral 

optoacoustic tomography (MSOT) with a NIRF dye targeting P-selectin/L-selectin 

(103). 

 

 

 

Figure 7: Examples of in vivo imaging for symptoms of joint inflammation in rodent models of rheumatoid arthritis. 
Consecutively, these images depict a) ultrasound imaging of a mouse ankle joint (99) b) radiolabelled 
microSPECT/microCT targeting integrin αvβ3 expression on osteoclasts in CIA mice (74) c) T1 microMRI of a 
normal rat ankle (79) and d) non-specific near-infrared fluorescence imaging of a CIA rat (85).   

 
Multispectral Imaging 

Multispectral imaging (MI) is not in common usage for the imaging of murine arthritis. 

Putten et al. (18) applied a multispectral imaging to microscopy of tendon 

microvasculature of RA mice, but to our knowledge multispectral imaging has not been 

used for bulk tissue imaging in murine models of RA. In general, multispectral imaging 

is seldom used for clinical assessment of pathology, but has had several successful 
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applications in research such as imaging of melanoma in human skin (104). 

Multispectral imaging is covered in more detail in section 2.7. 

2.5.2 Ex Vivo Arthritis Assessment  

2.5.2.1 Histology  

Evaluation by histology is considered the gold standard for disease evaluation in RA 

models, as the pathology can be seen and graded by eye. Disease symptoms such as 

inflammatory infiltrate, synovial hyperplasia, and bone erosions can be scored from 

simple Haematoxylin & Eosin (H&E) stained samples (Figure 8). However, the clear 

disadvantage of such scoring is that obtaining the tissue sample necessitates culling 

the mouse. In long-term experiments large groups of mice are often required so that 

mice can be culled at certain time points to investigate the progress of pathology.  

 

 

Figure 8: Haematoxylin and Eosin stained sagittal sections of mouse hind paws. Image a) contains a normal paw 
where no evidence of inflammation can be seen around the joints. Image b) contains a section from a TNF dARE 
mouse, with evidence of inflammation. In the magnified image on the right, inflammatory infiltrate containing immune 
cells can be seen around the bone.  
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2.5.2.2 MicroCT 

MicroCT is routinely used in imaging ex vivo tissue samples of RA models, containing 

joints expected to be affected by bone erosion or bone growth. Most mouse models of 

RA exhibit some degree of bone erosion in the periarticular cortical bone, which can 

be observed in microCT scans as pitting around the joint area (Figure 9). 

Reconstructed microCT meshes can be scored by eye according to the perceived 

progression of bone damage.  

 

 

Figure 9: Reconstructed meshes of wildtype and TNF dARE mouse hind paws imaged by microCT. Instances of 
bone erosion can be seen around the metatarsophalangeal joints in the TNF dARE mouse due to chronic joint 
inflammation. 

 
For this project an analysis method developed by Brown et al. (105), was used to 

measure bone deformity in hind paw microCT scans of arthritis models by comparison 

with a statistical shape model (SSM). A microCT scan gives high-resolution 3-

dimensional data about progression of hard tissue damage in arthritis models but 
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contains no information about soft tissue pathology. Figure 9 displays a typical scan of 

a healthy hind paw with an arthritic TNF dARE hind paw for comparison. 

2.6 Light Interaction with Tissue 

2.6.1 Reflection 

Most materials will reflect a proportion of the light incident upon them. The incident 

light can be reflected by either specular or diffuse regimes. Specular reflection occurs 

when light is reflected from the surface of the material, without propagating into the 

material itself. In a material with a smooth surface this results in a ‘mirror-like’ reflection, 

or on a rougher surface, the specular reflection disperses less uniformly. For many 

materials, however, the majority of reflected light is reflected diffusely. This happens 

when photons enter beneath the surface of a material, undergo scattering events within 

and are re-emitted from the surface.  

2.6.2 Transmission 

Light which propagates through the material and exits on the other side is referred to 

as transmitted. If photons do not scatter along their path the transmission is considered 

ballistic, otherwise it is diffuse (Figure 10). In most materials a proportion of light will 

be absorbed. The structure and composition of the material determines which 

wavelengths will be absorbed preferentially and this pattern of absorption lends a 

material its colour. Schematic examples of the light - material interactions are displayed 

in Figure 10. 
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Figure 10: Schematic of a block of tissue describing the paths of ballistic and diffusely transmitted photons, specular 
and diffusely reflected photons, and photon absorption. 

 

2.6.3 Physics Concepts 

Optical properties of materials can be characterised by their refractive index, 

absorption coefficient, scattering coefficient and anisotropy factor. This section 

provides a brief introduction to these concepts in context of light-tissue interaction. 

2.6.3.1 Refractive Index 

The refractive index of a material (n) describes the reduction in the velocity of light in 

a vacuum (c) to the velocity of light in the medium (v) according to  

 n =  
ୡ

୴
 . (1) 

 
The refractive index of a material influences the percentage of light specularly reflected 

at a material boundary according to Fresnel’s equation 

                                                          R =  
ଵ

ଶ
 
(ୟିୡ)మ

(ୟାୡ)మ
 ቄ1 + 
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where R is Fresnel reflection, c =  cos(θ୧), θ୧ is the angle of incidence, and a =  nଶ +

cଶ + 1. In Fresnel reflection, the angle of incidence is equal to the angle of reflection 

about the normal to the surface. Any light that then continues into the material will be 

refracted at an angle according to Snell’s law 

                                                                  θ୲ = arcsin ቀ
ଵ

୬
sin θ୧ቁ                                                           (3) 

 
where θ୲ is the angle of refraction (106). Biological tissues have an average refractive 

index higher than that of air. Taking human skin as an example, an incident beam of 

light first hits stratum corneum of the epidermis. The refractive index mismatch from 

the air (n=1.0) to the tissue (n≈1.4) leads to Fresnel reflection of approximately 5 – 7% 

of the incident light. The wavelength dependence of Fresnel reflection is generally 

relatively small and therefore all wavelengths will be reflected fairly equally.  

2.6.3.2 Absorption 

Photon absorption occurs in a quantised manner where photon energy is converted to 

a different form through absorption by an atom or molecule called a chromophore. 

Each chromophore has an associated range of wavelength-dependent absorption 

coefficients (µa[cm-1]), which describe the probability of photon absorption occurring 

per unit distance. For a given path length through a material containing an absorbing 

chromophore of a certain concentration, the absorption coefficients of the material can 

be calculated through the modified Beer-Lambert law 

                                                 A =  log ቀ
୍౥౫౪

୍౟౤
ቁ = μୟ ×  d ×  DPF + G                                              (4) 

 
where Iin is the incident intensity, Iout is the transmitted intensity, and μa is the 

wavelength-specific absorption coefficient of the material, d is the distance, DPF is a 
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factor which accounts for the increase in the pathlength in a scattering material and G 

describes the geometry dependent loss of light. In a mixture of chromophores the 

absorption coefficients of the material can be linearly decomposed to give the 

concentrations of the individual chromophores. In a mammalian tissue the main 

absorbing chromophores are melanin, haemoglobin and oxyhaemoglobin as shown in 

figure11a. To a lesser extent bilirubin and carotene contribute and in the near-infrared 

(NIR) wavelengths, the absorption of water begins to increase. 

 

Figure 11: Absorption and scatter coefficients for common biological chromophores and tissues. a) Absorption 
coefficients (μa/cm-1) of common biological chromophores in the range 450nm to 1000nm. b) Scatter coefficients 
(μs/cm-1) of different tissue types in the range 450nm to 1000nm.  

 

2.6.3.3 Scatter 

Scattering of a photon refers to the change in the direction of propagation, and the 

scattering properties of a material can be referred to by its scattering coefficients 

(µs[cm-1]), a wavelength dependent value which describes the probability of photon 

scatter occurring per unit distance, shown in figure11b. Scatter within a turbid material 

occurs when photons collide with scattering particles which have different refractive 

indices from that of the medium in which photons propagate. Depending on the size of 
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the scattering particles in relation to the wavelength of light, it is common to refer to 

two different regimes.  

 
Rayleigh scattering is scattering from particles much smaller than the wavelengths 

of light, less than a tenth of the size. The magnitude of Rayleigh scattering is highly 

dependent on the wavelength, with scattering proportional to 1/λ4 where λ is 

wavelength in nm. This means Rayleigh scattering is most relevant at the shorter 

wavelengths in the visible region of the spectrum, but much less significant at longer 

wavelengths. In Rayleigh scattering, the scatter acts as an electrical dipole oscillating 

in phase with the wavelength of the photon and scatters incident light isotropically 

(107). Rayleigh scattering can be caused as a result of tissue components such as 

collagen fibres.  

 
Mie scattering is the scattering of photons from particles of the same order of 

magnitude as the wavelength of incident light. In tissues it accounts for most of the 

scattering events in the visible and NIR wavelengths. Mie scatter is anisotropic and 

predominantly forward oriented. The incident light is therefore mostly scattered at a 

small angle from its initial direction of propagation. The angular distribution of Mie 

scattering is proportional to the ratio of the wavelength to the particle size. As particle 

size increases relative to wavelength, light scattering becomes more forward directed. 

 
Mathematically, Mie theory describes the scattering of light from spherical particles of 

diameter d and refractive index np embedded in the medium of refractive index nm. 

Given these parameters and the density of scattering centres, the scattering coefficient 

µs can be computed as a function of wavelength (). The structures in biological tissues 

responsible for Mie scattering in the visible and NIR wavelengths include cell nuclei, 
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mitochondria, vesicles and collagen fibres, which tend to range from 0.4m and 2m 

in size (108). Because of their relative sizes, the larger angle scattering in a tissue 

appears to come from mitochondria and the smaller angle scattering from cell nuclei.  

 
Both Mie and Rayleigh scattering are considered elastic scattering processes where 

the energy of the photon is substantially preserved but the direction is changed.  The 

total scattering coefficients of a tissue is a composite of scatter of Rayleigh and Mie 

regimes (Figure 12).  

 
An essential parameter for describing the angular scatter distribution is the anisotropy 

value (g) which is the average of the cosine of the scattering angle for the tissue 

                                                         g =  ∫ p(θ)(cos θ)(2π sin θ) dθ
଴

஠
                                               (5) 

 
where p(θ)  is the scattering phase function (defined below). Anisotropy g ranges 

between -1 and 1, where -1 is complete backscatter, 0 is isotropic scatter, and 1 is 

complete forward scatter. Mammalian tissues tend to be forward scattering with an 

average anisotropy value around 0.9 (109).  

 
The probability density of scattering angles for a particular tissue can be described by 

a phase function, which gives the probability of scatter at different polar angles. In 

biological tissues, the scattering phase function can be approximated by the Henyey-

Greenstein equation (110) 

                                                               p(θ) =
ଵ

ସ஠

ଵି ୥మ

(ଵା୥మିଶ୥ ୡ୭ୱ ஘)య/మ
 .                                                   (6) 
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Figure 12: Graph describing the Rayleigh and Mie contribution to the reduced scattering coefficient of typical human 
dermis. Values predicted by Mie theory applied to values isolated from the measurement of collagen fibres (87). 

 
The reduced scattering coefficient (µs’[cm-1]) is a useful parameter for modelling light 

propagation in a diffusive regime where scatter dominates over absorption (111). It can 

be calculated from the scattering coefficient and anisotropy via the equation  

                                                                            µs’ = µs(1-g).                                                               (7) 

 
Additional useful descriptors of scatter within a tissue is the Mean Free Path (mfp = 

1/µs), which is equal to the average distance a photon will travel in a tissue before a 

scattering event. 

2.6.4 The Optical Properties of Biological Tissues 

Biological tissue is a complex, multi-layered, structure composed of a mixture of optical 

scatterers and absorbers. The absorption coefficients of biological tissues depend on 

the concentrations and locations of a number of different biological chromophores. The 

combined effect of their concentrations and position within the tissue gives the tissue 

its colour (15). Included in figure11a are the absorption coefficient spectra of the main 
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three chromophores that are of interest to this project, haemoglobin, oxyhaemoglobin 

and water, across a range of wavelengths from 450nm to 1000nm. 

 
Most biological tissues are turbid (optically opaque), due to high density of scattering 

centres, although exceptions exist such as the lens and cornea of the eye, 

cerebrospinal fluid, or the synovial fluid (112). Higher scattering coefficients are 

associated with skin and bone, which contain dense extracellular collagen networks, 

while lower scattering coefficients are associated with muscle (figure11b).  

 
The light which is scattered and escapes absorption can be re-emitted from the surface 

of the material or transmitted through it. The angular distribution of diffusely reflected 

light in biological tissue generally approximates a Lambertian distribution (113), where 

the apparent brightness of the tissue remains constant regardless of the viewing angle 

of the observer. In mathematical terms, the luminance is directly proportional to the 

cosine of the angle between the direction of propagation and the surface normal. Any 

transmitted light is diffused, with a negligible proportion of ballistic photons. 

Transmission (I) of light over pathlength (L) without a scattering event can be 

calculated with  

                                                                           I = I଴eିஜ౩୐                                                       (8) 

 
where I0 is intensity of the incident light and µs is the scattering coefficient. Using this 

equation together with a typical scattering coefficients value for biological tissue (100 

- 200cm-1), the percentage of true ballistic photons in a tissue slab 2mm thick, the 

approximate width of a mouse hind paw, is practically zero.  
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2.6.5 Modelling of Photon Transport within a Biological Tissue 

Modelling of light interaction with biological tissues is common in many domains. In 

biomedical imaging the purpose of forward modelling is to simulate the application of 

a light source to a tissue to gain an estimation of an optical effect such as the 

reflectance, transmission, or fluence. All modelling methods implement an estimation 

of photon propagation through a tissue by ascribing tissue properties to a tissue 

geometry, then simulating the injection of photons from a model light source.  

2.6.6 Methods of Modelling Photon Transport 

Modelling of photon transport within a turbid tissue can be approached through several 

different methods. Fundamentally, photon propagation within a tissue can be described 

using the radiative transfer equation (RTE)  

        
ଵ

ୡ

ஔ୐(୰,ୱ,ෝ୲)

ஔ୲
+ ∇ ∙ L(r, sො, t)sො =  −μ୲L(r, sො, t) +  μୱ ∫ L(r, sො, t)P(sො ∙ sො

 

ସ஠
′)dΩ′ +  Q(r, sො, t) .     (9) 

 
In this equation L(r, sො, t) is the radiance, or the energy flow per unit area per unit solid 

angle per unit time at position r, direction sො , and time t. μ୲  is the total interaction 

coefficient, equal to μୟ + μୱ . The scattering phase function P(sො ⋅ sො′)dΩ′  is the 

probability of light scattering from direction sො to solid angle dΩ′ about direction sො‘ , and 

Q(r, sො, t) is the energy emitted from a light source at position r, direction sො, and time t. 

 
Derived from Maxwell’s equations, the RTE describes the propagation of photons 

through a medium in terms of absorption and elastic scattering events. However, given 

that most biological tissues present multi-layer, heterogeneous, complex, scattering 

media in the Visible and NIR wavelengths, the RTE cannot be solved analytically. The 

solution can either be resolved with approximations to the RTE or numerical methods. 
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Methods for solving the problem of photon transport within a tissue include Kubelka-

Munk (114), adding-doubling (115), discrete ordinate method (116), four-flux (117) and 

seven-flux models (118), the diffusion approximation (119), and Monte Carlo (120).  

Each method has its advantages and disadvantages dependent on the requirements 

of modelling, but the most ubiquitous for forward modelling of photon propagation in 

macroscale biological tissues are the diffusion approximation (DA) and the Monte 

Carlo (MC) method. Given that the DA assumes isotropic scattering and uses the 

reduced scattering coefficients of the tissue, it is inappropriate for modelling photon 

propagation over short distances like the mouse hind paw where light may not have 

been scattered isotopically before exiting the tissue. 

 
The Monte Carlo solution to the RTE is regarded as the most accurate method for 

modelling photon transport within a complex biological tissue (121), often used as 

validation for other methods (122–124). The MC method does not make the same 

approximations as the DA and will therefore model photon propagation accurately even 

in the case of highly absorbing or low scatter tissues. It is based on repeated random 

sampling and is a flexible technique, widely applicable to the modelling of under-

determined problems. In modelling radiative transfer, MC discretises photons, 

simulating scattering and absorption events individually according to probabilistic 

measures determined by properties associated with the tissue. There are several 

subtly different implementations of the method, but in general the algorithm is thus 

(shown as a flow diagram in Figure 13 and modelled photon paths in Figure 14). A 

single photon packet is launched and a proportion of light is reflected at the tissue 

boundary in accordance with Fresnel’s equations. The remainder carries on into the 

tissue. The weight of the photon is reduced by the probability of absorption with each 



 42

step, and the new step size and scattering angle calculated based on randomly 

sampling their respective probability distributions. The photon packet propagates in the 

tissue until it exits or is completely absorbed. Figure 13 displays a simple Monte Carlo 

flow chart of the algorithm process.  

 

 

Figure 13: Flow diagram for the basic process of Monte Carlo calculations for propagating photons in a homogenous 
semi-infinite slab.  

 
Given an appropriate number of photons, the Monte Carlo method is accepted as the 

most accurate solution to the RTE and serves as a validator for other modelling 

methods. The main disadvantage of Monte Carlo is the computationally intensive 
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nature of algorithm. Several approaches exist for speeding up Monte Carlo modelling 

of light, including scaling methods, perturbation MC, hybrid MC methods and variance 

reduction techniques, but the most effective is computational parallelisation, to which 

MC is well suited (125).  

 

 

Figure 14: Several examples of simulated photon walks through a tissue slab using the Multi-Layered Monte Carlo 
(MCML (126)) model of photon propagation through layered media (described in section 3.2.1). Each black dot 
represents an incidence of scattering.  

 

2.6.7 Extracting Optical Properties from Optical Measurements  

Given that the optical properties can contain information about the composition of a 

tissue, many methods exist for the reconstruction of optical properties in tissues. The 

method of reconstruction depends primarily on imaging method used to obtain the data 

which can vary vastly. In general, the problem of reconstructing optical properties for 

a turbid, heterogeneous tissue, is non-linear, ill-conditioned and ill-posed, due to cross 

talk between scattering and absorption coefficients.  

 
Commonly reconstructed tissue parameters for absolute imaging are the total 

haemoglobin concentration (HHb), the oxygen saturation (SO2), and the concentration 
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of melanin, or for dynamic imaging the change in the concentration of these 

parameters from an unknown start value. 3D reconstruction of tissue parameters 

generally involves inputting estimation values into a 3D model then performing an 

iterative optimisation procedure to converge the model to a minimum error with real 

data (43,46). Spatially resolved spectroscopy (SRS) uses the rate of attenuation of 

light with distance in the tissue to analytically derive values for tissue oxygenation 

(127). For tissue parameter estimation from multispectral images, different methods 

have been applied in literature. The modified Beer-Lambert law (equation 4) can be 

used in conjunction with Monte Carlo models to find a linear relationship using multiple 

regression to calculate the coefficients of absorbing chromophores (128–130), 

analytical models have been applied where the behaviour of light in the skin is 

approximated mathematically (131), and inversion by defining a unique mapping from 

spectral space to chromophore concentrations using Monte Carlo simulations covering 

all possible combinations of chromophores (104,132).   

2.7 Introduction to Multispectral Imaging  

Multispectral imaging (MI) refers to imaging modalities which record spectral 

information at multiple wavelengths, and hyperspectral imaging refers to imaging with 

hundreds of wavelengths or more.  Traditional colour imaging with a standard camera 

records a colour vector of red, green and blue (RGB) for each individual image pixel. 

When displayed simultaneously, the colours can be interpreted by the human eye 

because they correspond to the red, green and blue cone receptors of the retina. 

However, contracting the full spectral power distribution down to three values 

represents a significant loss of spectral information. Different spectral distributions can 

be perceived as identical colours providing their RGB ratio is the same, in an effect 
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known as metamerism. Recording higher resolution spectral information results in a 

truer representation of the spectral power distribution and better distinguishes spectral 

features. The range and resolution of recorded wavelengths depends on the 

instrumentation and on the purpose of imaging. Examples of uses for multispectral 

imaging are quite diverse and include functions such as remote sensing, examination 

of paintings, and microscopy (133).  

 
Macroscale multispectral imaging is not currently commonly used in clinical 

applications, although a number of research-based techniques have been developed 

with an increasing number of potential applications. The primary application of MI is 

some form of physiological parameter estimation from reflectance images. Given 

diffuse scattering in tissue, reflectance MI samples the diffusely reflected light from the 

surface of a tissue which represents light scattered within approximately 2mm of the 

surface in the visible wavelengths (134). If applicable, the method of parameter fitting 

varies from simple mathematical models to model based fitting regimes. The majority 

of literature focuses on MI of skin and skin lesions (104,135–138), but other 

applications include fundus imaging (139), endoscopy (140), and laparoscopy 

(141,142). Many different approaches have been taken to MI with functional 

modifications including multimodal imaging (143) with additional optical imaging 

techniques and recently, spatial frequency domain imaging  (SFDI) where structured 

light of multiple wavelengths is used to estimate tissue scatter (144). Software 

adaptations have included the use of machine learning algorithms for the purpose of 

classification (135,142).  
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2.8 Hypothesis  

On the basis of the changes in chromophore concentrations believed to occur in tissue 

affected by arthritis symptoms (section 2.2), and the capability of multispectral imaging 

to measure the spectral response of materials in addition to spatial data (section 2.7), 

this thesis examines the hypothesis that symptoms of arthritis in murine models of 

rheumatoid arthritis can be detected and quantified through analysis of spectral 

measurements. Stated more formally the hypothesis for the project is: 

 
Symptoms of inflammatory arthritis are detectable in mouse hind paws by multispectral 

imaging because of disease-induced variation in the relative quantities of biological 

chromophores. 
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3 Monte Carlo Modelling Optical Reflectance and Transmittance of 
the Mouse Hind Paw  

 

3.1 Introduction 

This chapter covers work done on modelling multispectral reflectance and 

transmittance spectra of the mouse hind paw using a multi-layered Monte Carlo model 

simulation of photon transport through a layered medium. The aim of this work was to 

model (in silico) tissue changes occurring with arthritis and evaluate the effect on the 

tissues optical response. To this end, section 3.2.1 describes the choice of computer 

model, section 3.3.1 describes the optical parameters used in the model. Section 3.3.2 

describes the changes induced to simulate arthritis. Section 3.4.1 describes the optical 

reflectance and transmittance data resulting from the model and section 3.4.2 details 

the effects of chromophore changes in different tissues.  

3.2 Equipment and Methodology 

3.2.1 The Multi-Layered Monte Carlo Model  

Modelling the mouse hind paw was approached using the prevalent and highly cited 

Multi-Layered Monte Carlo (MCML) code published by Wang et al in 1995 (126). The 

MCML program, written in ANSI standard C, was designed for modelling steady-state 

light transport in a semi-infinite multi-layered tissue. MCML uses dynamic data 

allocation for tissue and model properties, allowing the user flexibility over the model 

design and complexity. These attributes make it suitable for modelling the mouse hind 

paw. 
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For the modelling experiments outlined below, 30 individual wavelengths were used, 

shown on the modelled reflectance and transmittance spectra in section 3.4.1. The 

wavelengths were chosen to capture the spectral features resulting from the presence 

of biological chromophores in the tissue and they match the wavelengths later used in 

the multispectral imaging system described in chapter 5. For each wavelength, 

500,000 photon packages were simulated, sufficiently sampling reflectance and 

transmittance spectra to reduce noise artefacts (standard deviation of 10x repeat 

simulations <= 8.19e-4 in reflectance and <= 5.31e-4 in transmittance for all 

wavelengths). The photon packages simulate individual photons moving through the 

tissue (Figure 14) and their weight decreases with each scattering movement, 

simulating the probability of absorption. The weight losses are interpolated from 3D 

coordinates onto a 2D gridded area representing the tissue (Figure 15), which could 

be displayed after the Monte Carlo program has terminated. The weights of photons 

leaving the tissue are recorded, simulating the probability of reflectance/transmittance, 

angle of exit, and distance from photon entry point. A grid resolution of 5 μm (r, z) was 

adequate for displaying the layered tissue model (tissue boundaries fell on grid lines), 

and an angular resolution of 3 degrees, the accuracy to which the angle of photons 

exiting the tissue is described, was deemed suitable (the Lambertian properties of 

reflectance and transmittance could be demonstrated – section 8.A2).  

In addition to input values for grid size, resolution, and photon variables, MCML 

required the user to input values for macroscopic properties of the tissue layers, 

described in section 3.3.1.1. The values of the optical parameters were assumed to be 

homogenous across the specified tissue layer.  
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Figure 15: The coordinate system used by MCML for modelling photon propagation. The MCML program (126) 
uses a 3D coordinate system for modelling photon propagation with results interpolated onto a gridded 2D area 
described by the r and z axes. The origin of the 2D grid, where photons are injected sits at 0,0 of the (r,z) axes.  

 

3.3 Experimental Method Development  

3.3.1 Tissue Optical Parameters  

3.3.1.1 Sourcing the Input Parameters 

For the purpose of modelling the mouse hind paw, optical properties were required for 

several different tissue types across a range of wavelengths covering the visible and 

NIR spectra. The quantities required for modelling each individual tissue layer were 

the absorption coefficients (μa [cm-1]), scatter coefficients (μs [cm-1]), refractive index 

(n), anisotropy (g) and the tissue layer thickness (d [cm]). The sources of these values 

are addressed in sections 3.3.1.2 through 3.3.1.3. 

3.3.1.2 Tissue Layer Measurements  

For estimating the thickness of the tissue layers, images of H&E stained tissue sections 

from entire mouse hind paws were analysed. Mouse hind limbs were fixed in 4% 

neutral buffered formalin for 24 hours and then decalcified in 10% EDTA (a calcium-

chelating agent) pH7.4 for a period of 3 weeks. Samples were then embedded in 
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paraffin and sectioned along the sagittal axis by microtome, stained with haematoxylin 

and eosin and mounted with DPX and a coverslip. The slides were imaged by Zeiss 

Axioscanner and analysed with Zen Blue software, available from (145), taking 

measurements of typical tissue layer width across the paw.  

 
Ten slides, from a total of 6 mice (the same group of mice as imaged in section 

6.4.1.1), were analysed at four anatomical locations to measure the thickness of each 

of the tissue layers, with the results shown in Figure 16. In this thesis, these areas 

have been called the heel, midfoot, joints and toes. They were chosen due to broad 

anatomical differences in the structure of the foot. The ‘toes’ area included all the digits 

of hind paw. The ‘joints’ were isolated to include the area of tissue above the 

metacarpophalangeal joints connecting the toes to the central region of foot. This area 

is where the footpads are mostly located, thicker protuberances of skin where the paw 

is most in contact with the floor. The ‘midfoot’ encompassed the area above the 

metacarpal bones of the foot where there is a thicker layer of soft tissue, mostly 

muscle, between the skin and the bone. The final area was the ‘heel’, the area of skin 

over the collection of bones that form the heel of the foot.  

 
Five main tissue types were identified in the paw and the order of the layers used for 

in silico modelling were identified based on these sections. These were epidermis, 

dermis, muscle, bone and bone marrow. The midfoot was used to model the normal 

and arthritic spectral responses of the paw shown in section 3.4.1. The thickness of 

the tissue layers is described from the plantar surface (underside) of the paw to the 

dorsal (topside) surface, in line with the later reflectance and transmittance results for 

spectroscopy (chapter 4) and multispectral imaging (chapter 6).  
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Figure 16: Measurements of tissue layer thickness obtained from analysis of H&E stained mouse paw sections. 
Ten representative H&E slides were chosen from the group of 6 mice described in section 6.4.1.1 to ensure a good 
cross section of the four areas of interest. The measurements were divided into four anatomical regions to 
correspond to heterogeneity in structure a) Heel b) Midfoot c) Joints d) Toes. Epidermis 1 corresponds to the surface 
layer on the underside of the paw and epidermis 2 corresponds to the surface layer of the top of the paw. In the 
box plots the central line is the median, the bottom and top edges of the box are the 25th and 75th percentiles, the 
whiskers extend to the most extreme values not considered outliers and crosses indicate outlier values calculated 
by Matlab (a value more than 3 scaled median absolute deviations from the median) e) Example H&E section from 
a mouse hind paw with the anatomical regions described in section 3.3.1.2 highlighted.  

 

3.3.1.3 Absorption and Scatter Coefficients 

The optical properties used in the model are described below. For a description of the 

underpinning physics, covering the interaction of light with biological tissues, see 

section 2.6.  
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3.3.1.3.1 Absorption Coefficients: 

The major biological absorbers for the Visible and NIR wavelengths are haemoglobin, 

in its oxygenated (HbO2) and unoxygenated (Hb) forms, and water. The absorption 

coefficients for these three molecules are shown in Figure 17, along with the absorption 

coefficients for melanin and adipose which were also considered in the model. Melanin 

is present in the hair follicles on the upper surface of the mouse hind paw and lipids 

are present in the adipose tissue of the bone marrow. Haemoglobin is present in all 

tissues except the epidermis and water is ubiquitous, though concentrations of both 

may vary depending on tissue type. For Monte Carlo modelling, the absorption 

coefficients of a tissue were treated as a linear combination of constituent absorbers 

in each of the five tissue types. 

 
 

Figure 17: Absorption coefficient values (cm-1) in the wavelength range 450nm to 1000nm for common biological 
chromophores water (146), oxygenated haemoglobin (147), deoxygenated haemoglobin (147), adipose(148), and 
melanosomes (149). 
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3.3.1.3.2 Scatter Coefficients: 

In the case of biological tissues, scattering coefficients generally assume a decreasing 

exponential relationship with wavelength across the visible and NIR spectrum, due to 

the combined effects of Rayleigh and Mie scatter. Due to difficulty in measuring 

scattering coefficients and natural variation in tissue, exact values in literature are 

rarely consistent between different mechanisms of measurement and often do not 

cover the full visible and NIR spectra. Jacques et al (150) collated values of reduced 

scatter coefficients from many sources and fitted an empirical equation to the 

coefficients with a least squares approximation, generalising reduced scatter to cases 

of skin, bone, fibrous tissue, fatty tissue, and others.  This served to average variability 

between separate sets of scatter measurements and made accurate interpolation 

between wavelengths possible where measured data were sparse. For MCML 

modelling of the simulated mouse hind paw, reduced scatter coefficients were 

converted to scatter coefficients through equation 7 then fitted to the equation 

                                                                        μs(λ) = A + Me୩஛                                                        (10) 

 
where A, M, and k are independent variables: the parameters M and k describe a 

decreasing exponential curve and additive offset A was included to improve the fit. The 

fitting procedure was a least squares fitting of the equation to the coefficient values, 

implemented using Matlab (151). The scatter coefficients used in modelling the paw 

are shown as a function of wavelength in Figure 18 and the corresponding values for 

the parameters A, M, and k in different tissues are shown in the accompanying table.  
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Figure 18: Scatter coefficients for biological tissues fitted to equation 10. a) Scatter coefficients (cm-1) in the 
wavelength range 450nm to 1000nm for dermis, muscle, bone, epidermis, and adipose. Values calculated from the 
fitting of equation 10 to data collated and fitted by reference (150). b) Values for A, M and k in equation 10, for the 
five tissue types included in the mouse paw model. 

 
 

Anisotropy and Refractive Index: 

For the purposes of modelling the mouse hind paw using MCML, anisotropy (g) and 

refractive index (n) were assumed to be constant across the visible and NIR 

wavelengths. The values used in modelling, as well as their sources, are tabulated in 

Table 1.  

 Anisotropy (g) Refractive Index (n) 

Epidermis 0.7 (152) 1.34 (152) 

Dermis 0.8 (153) 1.4 (153)
 

Muscle 0.93 (154) 1.33 (153) 

Bone 0.9 (155) 1.644 (155) 

Adipose 0.9 (156) 1.4 (156) 

   

Table 1: Tabulated values for anisotropy and refractive index used for Monte Carlo modelling of the mouse hind 
paw. The source reference for each value is given in subscripted brackets.  
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3.3.2 Chromophore Concentrations 

For simulating reflectance and transmittance from the mouse hind paw, the optical 

properties described above (section 3.3.1), remained constant in the tissue model. This 

section describes the parameters that were varied in order to model the tissue changes 

in arthritis. The variables of interest for modelling the arthritic paw were the blood 

volume fraction (BVF), blood oxygenation, and tissue water concentration (see section 

2.2 for a description of the biological processes underlying these changes).  The 

objective was to identify how spectral reflectance and transmittance vary as the result 

of changes in concentrations of the three absorbers, and to indicate the range of 

expected spectral changes with arthritis symptoms before running experiments with 

live mice.  

 

 Blood Volume Fraction 

Norm (min-max) 

Hb balance 

Norm (min-max) 

H2O 

Norm (min-max) 

Epidermis - - 20 (157,158) 

Dermis 2 .5 (0.5 – 8) (150,159,160) 65 (40 - 80) (150,161) 65 (50 - 70) (157,158)  

Muscle 3 (1 – 12) (150,162,163) 65 (40 – 80) (150,164,165) 75 (70 – 85) (166,167) 

Bone  2 (1 – 5) (150) 65 (40 – 80) (2) 30 (155,167) 

Bone Marrow  3 (2 - 8) (168,169) 65 (40 – 80) (2) 30 (30 – 40) (168) 

    

Table 2: Values for blood volume fraction, blood oxygenation (Hb balance), and water concentration (H2O) used in 
the Monte Carlo model. The values outside the brackets indicate typical values for concentration of the three 
absorbers within the tissue types. Ranges of values indicated by literature are given within brackets and the 
subscripted brackets contain references.  

 
Typical values of absorber concentration and ranges of values, shown inside the 

brackets, are given in Table 2.  As with some of the optical values, there is a lot of 

variation in the literature concerning blood volume fraction, oxygenation and water 

concentration. The values and ranges established in Table 2 were informed by 
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literature which includes values from various tissue types, from a variety of species, 

different areas of the body, and using different calculation methods. Given the variation 

in values, and assuming natural physiological fluctuation in the parameters, Table 2 

shows values within ranges commonly identified.   

3.4 Results 

3.4.1 Modelling the Spectral Variation with Arthritis 

As discussed in section 2.2, inflammation of the joints is thought to induce a change in 

the concentration of the three absorbers, oxygenated haemoglobin, deoxygenated 

haemoglobin, and water in the joint and in the local tissues due to the biological 

processes associated with inflammation. In this section, computer-simulated ‘normal’ 

and ‘arthritic’ tissues were modelled for their reflectance and transmittance spectra. 

The changes in absorber concentrations may vary depending on factors like mouse 

model, time point in disease progression, and possibly other factors such as age/ 

genetic strain/ gender/ housing conditions, so the model of arthritis used in MCML 

should be considered a generic in silico model of murine paw inflammation and cannot 

be assumed to accurately model specific in vivo murine models of disease. For 

modelling the normal paw, the norm values in Table 2 were used. For modelling the 

changes in absorber concentrations in a generic, simulated arthritis the following 

changes were implemented in the model: 

Blood Volume Fraction: BVF increased from 3% of tissue volume in the normal tissue 

model to 5.4% in the arthritis tissue model in the muscle tissue layer, mainly informed 

by Gayetskyy et al. (23), where the increase in vessel volume was measured in 

successive regions of interest in the tissues surrounding the joint by microCT.  



 57 

Oxygen Saturation: The haemoglobin oxygen saturation values were reduced in the 

arthritis model from 65% in the normal tissue to 50% oxygenated haemoglobin in the 

arthritic tissue model in the muscle and bone. This reduction is an estimation mainly 

informed by Van der Putten et al (18) where a 10.8% drop in oxygenation was 

measured in the microvasculature of the inflamed mouse tendon measured by 

multispectral microscopy and Rajaram et al (95) who measured an 11% drop in oxygen 

saturation in rabbits inflamed knee joints with time-resolved diffuse optical 

spectroscopy.  

Oedema: Oedema was represented in the model by an increase in the water 

percentage of the muscle by 15%. In reality this would increase the volume and in turn 

affect the scattering coefficients and other chromophore concentrations, however for 

the purposes of modelling just the water percentage was altered. Perilli et al. (25) 

showed an increase of 36% in the volume of CAIA mouse paws, supporting the 

increase of water content in oedema.   

Figure 19 displays the reflectance and transmittance spectra calculated for a layered 

tissue model of a mouse hind paw. ‘Normal’ and ‘arthritic’ reflectance and 

transmittance spectra are displayed in blue and red respectively, modelled according 

to the values discussed above. The raw spectra have been interpolated by a cubic 

spline, estimating the spectral response across all wavelengths from 480nm to 

1000nm. The circular marks on the spectra in Figure 19a and b indicate the 

wavelengths modelled by MCML.  

Figure 19 indicates that the incidence of biological chromophore changes present in 

the arthritic mouse paw should be detectable in the reflectance and transmittance 
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spectral response of the tissue, according to the Monte Carlo modelling results. Figure 

19c and Figure 19d displaying the difference between the two spectra indicate that, for 

reflectance, there is a decrease across all wavelengths between 480 nm to 1000 nm, 

with the maximum difference located between 600 and 700 nm (7.40% decrease in 

reflectance at 610 nm). Transmittance, absorption and backscatter in the tissue 

resulted in very low transmittance in the visible spectrum, and differences between the 

normal and arthritic spectra were only apparent at wavelengths exceeding ~600nm 

where light transmission through the tissue is likely to become detectable. The 

maximum difference in transmittance of 2.46% occurs at 642 nm.  

 

Figure 19: Reflectance and transmittance spectra from a Monte Carlo model of the ‘midfoot’ mouse hind paw in a 
‘normal’ and ‘arthritic’ state. a) Reflectance spectra from the Monte Carlo tissue layer model of the mouse hind paw, 
where a case of a normal (blue) paw and an arthritic (red) paw have been modelled using optical parameters from 
literature and measurements from H&E tissue sections. b) Transmittance spectra produced from the same model. 
c) Root Mean Square difference between the normal and arthritic reflectance spectra. d) RMS difference between 
the normal and arthritic transmittance spectra. 

 



 59 

In general, arthritic symptoms lead to a reduction in reflectance and transmittance 

response across all wavelengths; a logical result considering the predicted increased 

concentration of biological absorbers in the tissue. Modelling results from the other 

areas of the feet showed smaller changes (section 8A3), but considering that the 

thickest muscle layer is found in the midfoot region and the modelled chromophore 

changes focus on the muscle tissue, this result was expected. Additional outputs of the 

MCML program for the modelling of the mouse hind paw have been included in the 

appendices (section 8.A2). 

3.4.2 Spectral Variation with Localised Parameter Changes  

In rheumatoid arthritis, the main site of pathology centres around the joint and the 

synovial lining of the joint capsule, affecting local tissues as modelled above. Although 

RA is a systemic disease and can have effects of other tissues, tissue distant from 

sites of inflammation shows no overt pathological changes.  

 
The MCML model of the central region of the mouse hind paw described above 

(section 3.4.1) was used to model changing optical parameters in the deeper tissue 

(e.g. muscle) versus superficial tissue (e.g. reticular dermis). Given that the signal from 

arthritic inflammation is likely to reside in the deeper tissue layer, it is informative to 

see whether the spectral response of the tissue is affected by the depth of the 

chromophore changes.  
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3.4.2.1 Tissue Layer vs Change in Spectra  

This section looks at the effect of tissue layer depth on the spectral effect of 

chromophore changes. Given the aim of multispectral imaging to look at the spectral 

changes caused by arthritis symptoms, the imaging system needed to be able to 

distinguish chromophore concentration changes in superficial tissues from 

chromophore changes at the site of pathology. Given that the mouse hind paw is a thin 

structure which contains a variety of different tissue types, the distance between 

different layers is less than 1mm. Detectable tissue changes resulting from arthritis 

were expected to be mostly in the muscle layer peripheral to the bone, roughly 0.8mm 

below the skin surface although this would vary with the anatomy of the paw. In this 

section we aimed to test whether the chromophore changes in tissue layers adjacent 

to the bone could be contaminated by cross-talk from chromophore changes in 

superficial layers of the skin. Figure 20 displays the results for changing the blood 

volume fractions in the dermis and muscle (Figure 20a and b), the oxygenation in the 

dermis and muscle (Figure 20c and d), and the water content (Figure 20e and f). 

3.5 Discussion 

3.5.1 Discussion of Results  

In the Monte Carlo in silico model described above, changes in the concentration of all 

three absorbers produce spectral changes in the reflectance and transmittance 

response of the tissue. For the concentration changes shown in Figure 20a and b, 

increasing the BVF causes the largest changes in reflectance and transmittance for 

the dermis and for the muscle layers. 
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Figure 20:The effect of changing individual model parameters on reflectance and transmittance spectra for a Monte 
Carlo model of the mouse hind paw a) Spectral changes in the tissue reflectance response resulting from increasing 
blood volume fraction (BVF) in the dermis (DermisModerate: darker blue 2.5-4.5%, DermisExperimental: pale blue 
4.5-5.75%), and the muscle layer (MuscleModerate: darker red 3.0-5.4%, MuscleExperimental: pale red 5.4-6.9%). 
b) Transmittance spectral response resulting from the tissue changes outlined in a. c) Spectral changes in tissue 
reflectance resulting from decreasing blood oxygen saturation from in the dermis (darker blue 65-50%, pale blue 
50-40%), and the muscle layer (darker red 65-50%, pale red 50-40%).  Blood volume fraction was set to 4.5% in 
the dermis and 5.4% in the muscle. d) Transmittance spectral response resulting from the tissue changes outlined 
in c. e) Spectral changes in the tissue reflectance response resulting from increasing water concentration in the 
dermis(darker blue 65-78%, pale blue 78-87%), and in the muscle (darker red 75-90%, pale red 90-100%). f) 
Transmittance spectral response resulting from the tissue changes outlined in e. 
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Figure 21: Root mean squared (RMS) difference resulting from changing individual model parameters for  
reflectance and transmittance spectra for a Monte Carlo model of the mouse hind paw a) The root mean squared 
difference between the reflectance spectra shown in Figure 20a, where BVF was changed in the dermis (blue and 
pale blue) and muscle (red and pale red). b) The RMS difference between the transmittance spectra shown in 
Figure 20b, where BVF was changed in the dermis (blue and pale blue) and muscle (red and pale red). c) The RMS 
difference between the reflectance spectra shown in Figure 20c where the blood oxygen saturation was altered in 
the dermis (blue and pale blue) and muscle (red and pale red). d) The RMS difference between the transmittance 
spectra shown in Figure 20d where the blood oxygen saturation was altered in the dermis (blue and pale blue) and 
muscle (red and pale red).  e) The RMS difference between the reflectance spectra shown in Figure 20e where the 
water content was altered in the dermis (blue) and muscle (red). f) The RMS difference between the transmittance 
spectra described in Figure 20f where the water content was altered in the dermis (blue) and muscle (red).  
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Figure 21a and Figure 21b demonstrate that for reflectance the spectral response of 

the tissue changes according to the depth of the tissue layer in which the absorber 

concentration change occurs. Increasing the BVF in the dermis decreases the 

reflectance response of the tissue primarily in the visible region of the spectrum 

between 500 and 600nm, whereas increasing the BVF of the muscle causes a 

decrease in the reflectance across all wavelengths of the visible and NIR spectrum, 

with a maximum response at around 620nm. In the case of vasodilation/angiogenesis 

in response to inflammatory activity in the joint, an increase in the BVF would be 

expected in the local tissues. These simulations suggest that multispectral imaging of 

the mouse hind paw would detect a decrease in reflectance across all the visible and 

NIR wavelengths in response to increased BVF in the joint tissue/ muscle.  

 
For the variation of the haemoglobin oxygen saturation, changes detectable in the 

simulated spectral responses of the tissue were dependent on the BVF. Unsurprisingly, 

decreasing the oxygen saturation has a larger effect on the spectra if the concentration 

of blood in the tissues is higher. Consequently, if the blood concentration of the mouse 

hind paw is lower than predicted by the model, changes in the spectral shape resulting 

from decreasing oxygen saturation may be difficult to detect.  

 
Changing the blood saturation in the dermis and muscle resulted in approximately 

equivalent changes in the reflectance response of the tissue for the visible wavelengths 

from 500 nm to 600nm, but saturation changes in the muscle resulted in larger changes 

in the reflectance response from 600nm to 1000nm. Another notable feature of 

saturation change was the isosbestic point at 800nm apparent in Figure 20c and d, 

showing an increase of reflectance and transmittance at these wavelengths with 
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decreasing saturation. This decrease in absorbance is in opposition to the effect of 

increasing BVF due to the relative effect of decreasing oxygenated haemoglobin. For 

imaging live arthritis models, these simulations suggested that changes in oxygen 

saturation resulting from increased metabolism in the inflamed tissue around the joint 

should be detectable in the reflectance and transmittance spectrum by an increase in 

absorption in the 600 – 800nm region.  

 
Measurable changes in the spectral response of the tissue resulting from changing 

water concentration were primarily contained in the region from 900 to 1000nm. The 

percentage change of the spectral response was relatively low, which may make it 

difficult to detect in an imaging system when noise is taken into consideration. Some 

arthritis models also experience less oedema than others so the presence of spectral 

changes resulting from water would depend also depend on the model being imaged.  

 
In general, longer wavelength photons sample the tissue to a greater depth, whereas 

the shorter wavelengths sample the more superficial layers, resulting in concentration 

changes of the same chromophores having a different effect on the spectral response 

of the tissue depending on the depth of the tissue layer. The results of these 

experiments suggest that arthritis-associated chromophore concentrations in the 

deeper layers of tissue adjacent to the bone should be detectable in the reflectance 

and transmittance spectra and should be distinguishable from superficial chromophore 

concentration changes.  

 
The MCML method of modelling photon transport in turbid media is a well-established 

model used often in modelling photon interactions with layered tissues (125,170–173). 

Although 3D Monte Carlo methods exist (121), a slab approximation was used for this 
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work to avoid the need for building an accurate 3D mesh. Although the effects of RA 

have been modelled in human fingers (17), to the authors knowledge this is the first 

incidence of modelling spectra from arthritic mouse hind paws. This work does 

however corroborate results detailed from previous imaging experiments in literature 

(94). 

3.5.2 Limitations 

The limitations of this modelling method were mainly due to difficulty in sourcing optical 

parameters from the literature and the approximations made by the MCML model.  

Lack of corroborated values to use as inputs to the model and differences in the 

geometry of the tissue can introduce uncertainty and error into the resulting spectra, 

and because of this the results of the model cannot be considered a replacement for 

real imaging data.  

3.5.3 Conclusion 

Modelling of the mouse hind paw using a multi-layered Monte Carlo based 

implementation of photon transport indicated detectable changes of the reflectance 

and transmittance spectra in a simulated model of arthritis. Values from literature were 

used to model the expected changes in chromophore concentrations. Further 

investigation with changing chromophore concentrations individually showed that 

increasing BVF, decreasing oxygen saturation, and increasing water concentration all 

contributed individually to the changes seen in the tissue spectral responses. They 

also produced characteristic changes in the tissue reflectance depending of the depth 

of the tissue layer. The next chapter details the first examples of hyperspectral data 

from live mouse arthritis models using spectroscopy.  
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4 Spectrophotometry of Rheumatoid Arthritis Mouse Models 

4.1 Introduction  

Modelling the mouse paw using Monte Carlo suggested that spectral changes should 

be detectable in the 450 to 1000nm spectral region in both reflectance and 

transmission geometry (section 3.4.1). This chapter discusses the first application of 

spectral imaging on the mouse paw using spectrophotometry in a reflectance and 

transmittance format, procuring high-resolution spectral data of the changes occurring 

due to arthritic symptoms. Section 4.2 introduces the equipment and calibration 

methods. Section 4.4.1 displays the data taken from live anaesthetised mice and 

Section 4.5 discusses the findings and issues of spectrophotometry for data collection 

from live mice.  

4.2 Equipment and Methodology 

The aim of spectrophotometry of live mice was to collect high-resolution spectral data 

simultaneously in a reflectance and transmittance geometry from the hind paws of live 

mice. The equipment used in designing the set-up for imaging is described below.  

4.2.1 Light Source  

The light source used for illuminating the subject of imaging was an Ocean Optics HL-

2000-FHSA tungsten halogen with a quoted spectral range from 360nm to 2400nm 

and a 6.7mW output, Figure 22a displays the spectrum of the light source measured 

in the reflectance geometry of the spectrophotometry system (section 4.3.1) using a 

99% reflectance standard.  
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Figure 22: Ocean Optics HL-2000-FHSA light source used for collecting spectrophotometry measurements. a) 
Spectral output of the Ocean Optics HL-2000-FHSA tungsten halogen light source. b) Photo of the Ocean Optics 
HL-2000-FHSA light source. 

 

4.2.2 Spectrometer(s)  

An Ocean Optics Flame-s spectrometer was used to measure diffuse reflectance data. 

The spectrometer has a wavelength measurement range from 190nm to 1100nm 

(spectral resolution approximately 0.3nm to 0.4nm increasing linearly over wavelength 

range), high thermal stability, a variable integration time from 1ms to 65 seconds and 

a quoted signal to noise ratio of 250:1 at full signal. OceanView software was used to 

control the spectrometer for taking measurements. The spectrometer was used in 

conjunction with a bifurcated 2m R200-7-VIS-NIR optic fibre with a 200μm core and a 

wavelength range from 400nm to 2100nm. For measuring diffuse reflectance, a probe 

was also designed in openSCAD and printed in black PLA plastic to keep the distance 

of the fibre from the tissue constant and to locally block background light (Figure 23a). 

It would not, however, block light which migrated through the tissue.  

An Edmund Optics BSR112E-VIS/NIR spectrometer was used to take transmission 

data from the imaging subject, with a wavelength range from 242nm to 1052nm 

(spectral resolution varying between 0.3nm and 0.5nm), and a variable integration 
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time. Instead of an optic fibre, a diffuser was placed in front of light input to the 

spectrometer.  

 

Figure 23: Spectrometers used to collect reflectance and transmittance spectral measurements. a) Reflectance 
probe designed using openSCAD and Slicer software for holding the reflectance probe optic fibre at a set distance 
of 3mm from the tissue and blocking background light illumination. b) Photo of the Edmund Optics BSR112E-
VIS/NIR spectrometer used for transmittance data. c) Photo of the Ocean Optics Flame-s spectrometer used for 
reflectance spectroscopy. 

 

4.2.3 Mouse Models 

All experiments were carried out at the University of Birmingham, UK, following strict 

guidelines governed by the UK Animal (Scientific Procedures) Act 1986, under PPL 

licence number 70/8003 and approved by the local ethics committee (BERSC: 

Birmingham Ethical Review Subcommittee). All mice were fed a standard chow diet 

and maintained on a 12-hour light-dark cycle. 

4.2.3.1 TNF dARE  

The TNF dARE colony (58), originally a gift from Prof. George Kollias (BSRC 

Alexander Fleming Athens University Medical School), was maintained in-house at the 

University of Birmingham. Mice were genotyped by Transnetyx for the presence of the 

transgene and were monitored weekly for signs of arthritis. TNF+/dARE mice develop 

arthritis symptoms whilst littermate controls TNF+/+ do not.  
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Data shown in section 4.4.1.1 were taken from heterozygous C57BL/6 TNF dARE mice 

and their normal companion littermates on a total of three separate occasions. The 

data were combined for analysis. Thirteen mice were analysed in total, five of which 

were TNF+/dARE and eight were TNF+/+ controls. The age of the mice when 

spectrophotometry was performed ranged between the ages of 9 weeks and 13 weeks 

and both male and female mice were imaged. Two females at 9 weeks of age, one 

normal and one TNF dARE, six males at 12 weeks, four normal and two TNF dARE, 

and five males at 13 weeks, three normal and two TNF dARE.  

4.2.3.2 CIA 

6-8 week old male DBA/1 mice (Harlan) were injected subcutaneously at two sites on 

the lower back (100l in total, 50l at each site) with 1mg/ml complete Freund's 

adjuvant (Chondrex Inc., cat.no. 7001) containing 1mg/ml bovine type II 

collagen (Chondrex Inc., cat.no. 2002-2). On day 21 a boost injection of bovine 

collagen at 1mg/ml in Freund’s adjuvant (as above) was given intraperitoneally. Mice 

were scored daily for signs of arthritis which has a variable onset but normally begins 

between 20 and 35 days following the initial injection. Spectrophotometry was 

performed between 30 and 40 days following the initial injection. 

4.2.4 Imaging Protocol  

Spectrophotometry was performed on the hind paws of the normal and arthritic mice. 

The mice were anesthetised immediately prior to imaging then reflectance 

spectrophotometry data were taken from the underside of the paw and transmittance 

data from the upper side using the method described in section 4.3. Both hind paws 

were imaged and 3 repeat measurements were taken for each paw, removing and 
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replacing the probes on each occasion. Erroneous measurements where intensity was 

too low due to bad probe contact with the tissue were discarded and the remaining 

spectra were mean averaged to give one reflectance and transmission spectrum per 

paw. As far as possible, the reflectance measurements were taken from the centre of 

the paw, but due to the surface topology and the small size of the paw, there may be 

small variation in the location of the measurements. All experiments were carried out 

at the University of Birmingham, UK following strict guidelines governed by the UK 

Animal (Scientific Procedures) Act 1986 and approved by the local ethics committee 

(BERSC: Birmingham Ethical Review Subcommittee). 

 

4.3 Experimental Method Development  

4.3.1 Spectrophotometry System set-up 

In order to take measurements in a reflectance and transmittance geometry for live 

mouse subjects, the hind paw was illuminated by the light source though a bifurcated 

optic fibre and the reflected and transmitted light detected simultaneously through the 

use of two separate spectrometers. For measuring diffuse reflectance data, the second 

half of the bifurcated fibre was directed to the Ocean Optics spectrometer. Using this 

set-up light illuminates the tissue through the optic fibre then reflected light returns 

along the same fibre and is detected by the spectrometer. Figure 24a shows a 

schematic diagram describing the equipment set up. For simultaneous measurements 

of transmitted light the same set up was retained for illumination, for light collection the 

Edmund Optics spectrometer was placed directly below the mouse hind paw on the 

opposite side to the source of illumination. Spectral data were taken in a darkened 

room.  
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Figure 24: Spectrophotometry system set-up for collecting spectral measurements from mouse models of 
rheumatoid arthritis. a) Schematic diagram describing the geometry of the system for gathering diffuse reflectance 
and transmittance data from an imaged object. b) Photo taken of the diffuse reflectance and transmittance 
spectroscopy system. 

 

4.3.2 System Calibration  

Given that the calculation of reflectance and transmittance from this spectroscopy 

system was dependent on the instrument response function (IRF), combining the 

collective spectral efficiencies of the light source and components of the optical 

system, the system required calibration so that reflectance and transmittance spectra 

could be calculated for the imaged object.  

For reflectance imaging, Labsphere Spectralon® diffuse reflectance standards, with 

an optically flat reflectance in the range 250nm to 2500nm ±4%, and ±1% in the 

photopic range, were imaged in experiments under the same conditions (exposure 

time, frame averaging, background light) as the object of interest. Figure 25a shows 

the reflectance percentage of the standards calculated by the spectroscopy system 

and Figure 25b displays a photo of the 2%, 50%, 75% and 99% reflectance standards. 

The OceanView software used to control the Ocean Optics Flame-s spectrometer, 

automated the process of calibration by taking a light reading (reflectance data from 

the 99% reflectance standard) and a dark reading (reflectance data from the 2% 

reflectance standard) prior to taking data. The auto-calibrated spectra could then be 

corrected to 100% manually.  
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For transmittance spectrometry calibration, a spectrum of relative light source intensity 

was taken directly by the Edmund Optics Spectrometer with a Neutral Density (ND) 

filter of Optical Density either 1.0 or 0.6 inserted into the light pathway in order to 

reduce the light intensity to a level which would not overexpose the CCD. Calibration 

of the data was done manually using equation 11 

                                                     T஛ =   
(ୗಓିୈಓ)

(୍ಓିୈಓ)
 ×  NDTransmission஛                                          (11) 

 
where Tλ is a vector of object transmission over wavelength, Sλ is the raw uncalibrated 

spectral transmission of the object, Dλ is wavelength dependent dark noise, Iλ is the 

ND filtered light source intensity, and NDTransmissionλ is the published data for the 

ND filter transmission at wavelength λ.  

Due to noise, the spectral data were mean smoothed across 20 data points giving an 

effective spectral resolution of 6.7nm in reflection and 7.9nm in transmission. The 

mean reflectance values for the reflectance standards calibrated by the 99% tile were 

75.35%, 50.92% and 1.63%, with coefficients of variation 2.10%, 4.16% and 13.27% 

respectively. The spectroscopy data from the reflectance imaging of the standards 

suggests that there is some variation in reflectance across the wavelength range of 

400 – 1000nm, but this agrees well with published data (174) and with later 

multispectral imaging of the reflectance standards (section 5.4.1).  
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Figure 25: Spectralon reflectance standards used for calibrating spectrophotometry measurements. a) Reflectance 
spectrophotometry results for the 75%, 50% and 2% reflectance standards calibrated by the 99% reflectance 
standard. b) Photo of the LabSphere 99%, 75%, 50% and 2% reflectance standards. c) ThorLabs published data 
for ND1.0 reflective filter transmission. 

 

4.4 Results  

4.4.1 In Vivo Diffuse Reflectance and Transmission Spectrophotometry  

This section describes the results from performing diffuse reflectance and 

transmittance spectrophotometry on the hind paws of a number of live, anaesthetised 

mice. The aim of these imaging sessions was to examine the spectral differences, 

previously modelled using Monte Carlo (Section 3.4.1), to see if spectral changes were 

apparent in real data. Section 4.4.1.1 deals with data taken from the TNF dARE murine 

model of rheumatoid arthritis alongside normal controls and section 4.4.1.2 discusses 

data taken from the CIA murine model of RA.  

 

4.4.1.1 TNF dARE Spectrophotometry 

The TNF dARE mouse, discussed in section 2.4.1, exhibits a form of erosive 

polyarthritis arising from the deletion of gene region controlling TNFα expression. 

Disease arises spontaneously with age and clinical symptoms of redness and 
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deformity are usually apparent around 9 weeks of age, progressing relatively 

symmetrically. The predictability of arthritis development, and the availability of this 

mouse model makes it a good candidate for preliminary spectral imaging. Details of 

the mice used in this experiment are discussed in section 4.2.3.1. 

 

 

Figure 26: Spectrophotometry average reflectance and transmittance data for normal and TNF dARE mice. N=5 
TNF dARE and N=8 normal mice, with spectra taken from two hind paws per mouse giving a total of 16 spectra for 
reflectance and 21 spectra for transmittance (spectra were removed from the data where repeatability over three 
repeat measurements was not achieved). Standard deviation for the data is displayed as a shaded region around 
the mean. a) Mean reflectance spectra from the hind paws of a sample of 10 normal and 6 TNF +/dARE 
measurements. b) Mean reflectance spectra for the data set shown in Figure 26a min- max normalised by 
reflectance between 575 and 900nm. c) Mean transmittance spectra from the hind paws of a sample of 12 normal 
and 9 TNF +/dARE measurements. d) Mean transmittance values for data set transmission of TNF dARE paw 
measurements min-max normalised by values between 500nm and 900nm.  
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The results of the TNF dARE spectrophotometry experiments are shown in Figure 26. 

Figure 26a and Figure 26c show the mean reflectance and transmittance spectra which 

have been measured and calibrated by the procedure outlined above, and Figure 26b  

and Figure 26d display normalised data showing the spectrally relevant variation 

apparent in the measurements. The spectral data were smoothed by a moving mean 

method, with the size of the window varying depending on the intensity of the light 

source. The effect of this is to smooth the data more in areas of increased noise but 

preserve the spectral shape in areas with decreased noise. All spectra were 

separately min-max normalised between the wavelengths of 575nm to 900nm for 

reflectance and 500nm to 900nm for transmission, excluding the extreme 

wavelengths due to increased noise in these spectral regions. The mean and 

standard deviation were then taken for the normalised data.   

 
In both reflectance and transmittance data, spectroscopy of the hind paws of the TNF 

dARE model of RA showed spectral differences, indicating that the symptoms of 

arthritis had changed the optical properties of the tissue to an extent which was 

detectable by spectrophotometry. In Figure 26b and Figure 26d the mean reflectance 

and transmittance spectra have been normalised to allow better visualisation of the 

changes occurring in spectral shape.  

 
Statistical significance for the separation of the spectra was determined by two-sample 

t-test of the root mean squared (RMS) distance, inter- and intra- diseased and normal 

mice, for the normalised spectral data. The sum of the RMS distance was calculated 

for all 16 spectra giving a total of 425 RMS values. The t-test was then performed 

between two groups, the RMS values for the differences between spectra within the 
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diseased and normal groups, and the RMS values for the spectral variation between 

groups. For the wavelength range 480 to 950nm, the RMS difference between spectra 

within the groups was significantly different from the RMS between the groups at a p-

value of 0.0251. For normalised transmittance between 480nm and 950nm, the RMS 

difference between groups was statistically significant at a p-value of 0.0351.  

 

4.4.1.2 CIA Spectrophotometry 

The results from spectrophotometry of the TNF dARE model of arthritis showed 

differences apparent in the reflectance and transmittance spectra of the hind paws. A 

small experiment was also conducted on the CIA mouse model of RA. The CIA mouse, 

described in section 2.4.3, has a different phenotype to the TNF dARE. Polyarthritis 

appears as classic inflammatory symptoms of swelling (oedema) and redness, and 

joints may be affected in a more localised and non-symmetrical pattern. The mice used 

in this experiment are introduced in section 4.2.3.2. 

 
Figure 27 shows the raw spectra and normalised spectra from a small experiment 

imaging 2 mice, one symptomatic CIA mouse and one experimental control. 

Reflectance spectra were taken from the top of the hind paw and transmission spectra 

were taken from the underside of the foot. The data shown in Figure 27 has been 

processed using the same smoothing and normalisation methods as described for the 

TNF dARE data.  

 
Evident spectral differences were apparent for both reflectance and transmittance data 

in one paw of the CIA mouse (paw 1). Notably, the same paw was scored to be more 

highly affected in the manual examination.   
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Figure 27: Reflectance and transmittance data for CIA mice hind paws, N=1 CIA and N=1 normal with spectra taken 
from two hind paws per mouse giving a total of four spectra. a) Raw reflectance data taken from the tops of the hind 
paws of 2 mice, 1 CIA symptomatic and one normal control. Data from separate feet are indexed by colour. b) Mean 
reflectance measurements from the data shown in Figure 27a, min-max normalised. c) Raw data for transmittance 
taken from the same 2 mice d) Min-max normalised transmittance values taken for the data shown in Figure 27c. 

 
 
Whilst no firm conclusions can be drawn from such a small group number, the results 

indicate that the CIA mouse does show spectrally detectable changes in tissue optical 

properties concurrent with arthritis symptoms, and that the spectral changes induced 

are different to those of the TNF dARE model of RA. The spectral effects in the CIA 

mouse were not symmetrical, the reflectance spectra show a decrease of reflectance 

across the NIR wavelengths in one paw and a more defined ‘w’ shape in the 500nm to 

600nm region indicative of a higher concentration of oxygenated haemoglobin. The 
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transmittance data shows a relative increase of transmission in the 600 to 800nm 

region suggesting that the overall oxygenation of the tissue is increased.  

4.5 Discussion   

4.5.1 Discussion of Results 

The spectrophotometry data has provided an indication that the optical changes in the 

hind paws of mouse models of RA may be detected by hyperspectral/multispectral 

imaging techniques. Whilst there was considerable intragroup variation in the raw data, 

normalising the spectra by the procedure described in Section 4.4.1.1 allowed the 

relative changes in spectral intensity between the arthritic and normal group to become 

clearly apparent. These changes were statistically significant according to the RMS 

distances. In the normalised data, both transmittance and reflectance appear to have 

relatively reduced intensity in the 600nm to 800nm region. Assuming that the 

pathlength of the light is equivalent between the arthritic and normal mice, this change 

is indicative of a decrease in the ratio of oxygenated haemoglobin to non-oxygenated 

haemoglobin, which has a higher absorption in this region. A similar effect is seen in 

section 3.4.2 when decreased oxygenation is modelled with Monte Carlo.  In contrast, 

the CIA data appeared to show increased transmission in between 600 and 800nm 

region perhaps suggestive of an increase in oxygenation. This supports the idea of 

different pathological processes occurring in the two different arthritis models where 

the CIA mouse has a more ‘inflammatory’ phenotype.  

There is also some evidence that the absorption of water can be seen in the TNF dARE 

data where the decrease in absorption at 967nm coincides with the peak in water 

absorption coefficients at 975nm (Figure 26), although the data are more susceptible 
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to noise in this spectral region. This peak is also apparent in the Monte Carlo model of 

the paw.  There is no clear difference between the normal mice and TNF dARE mice  

There also appears to be a variation in the spectral changes detected between different 

types of arthritis models. As discussed in section 2.4.1, the TNF dARE mouse exhibits 

an ‘erosive’ phenotype where bone erosion and inflammatory cell infiltration can occur 

independently of typical ‘inflammatory’ symptoms of swelling and redness. This 

parallels the human disease where bone erosion can progress between episodes of 

inflammation with subclinical synovitis (175). These data suggest that the processes 

involved in these two different mouse models may involve chromophores which 

produce distinct spectral changes.  

4.5.2 Limitations 

There were limitations associated with the spectrophotometric method of measuring 

spectral differences. With no spatial information and difficulty in verifying consistency 

in probe to tissue contact, covariant factors may influence the resulting spectra.  

Cross-population analysis of spectrophotometric data relies on the spatial data 

remaining relatively constant. Whilst spectrophotometry of the TNF dARE mouse 

group did reveal some spectral changes, exact and reproducible placement of the 

probe was difficult to achieve due to the small size of the mouse hind paw and the 

complex surface topography of the paw, which has many small protrusions of the 

dermis, called footpads, for cushioning the foot. The tissue structure of the hind paw is 

heterogeneous and spatial data cannot be ruled out as a factor in influencing spectral 

variation.  Likewise, in transmission, variation in light intensity may result from 
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measuring different tissue thicknesses resulting from measurements taken different 

areas of the hind paw.  

Other confounders with data collection include the reduced signal to noise ratio (SNR) 

at the extreme wavelengths, mainly due to low intensity output of the tungsten halogen 

light source. Whilst exposure time for the spectrometer could be increased to 

compensate low signal, the dynamic range of the spectrometer CCD limited exposure 

time in order to not overexpose the highest intensity wavelengths. In future 

experiments, the spectral output of the tungsten halogen bulb could be tuned with 

filters to attenuate the highest intensity wavelengths and adjusting exposure time 

accordingly, to increase SNR at the extreme wavelengths.  

4.5.3 Conclusion 

Overall, spectrophotometry confirmed that spectral changes in reflectance and 

transmission data occur in line with modelling predictions. The positive results from 

these data set foundations for the design of a multispectral imaging system, described 

in the following chapter, which could image in the both a reflectance and transmission 

geometry, providing spatial data as well as spectral data for the mouse hind paw.  
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5 Multispectral Imaging System Set-up and Characterisation 

5.1 Introduction  

The aim of this chapter is to describe the set-up, calibration, and imaging proficiency 

of the multispectral imaging system designed for the in vivo imaging of mouse models 

of rheumatoid arthritis. The chapter begins by describing the equipment and 

instrumentation (section 5.2), then discusses the spectral calibration of the system and 

the calibration of system components (section 5.3), and finally displays the results of 

a phantom imaging experiment with known optical properties (section 5.4).  

5.2 Equipment and Methodology 

The aim of this multispectral imaging system was to gather multispectral reflectance 

and transmittance data from the hind paws of anaesthetised mice. The wavelengths 

used ranged from 480nm to 1000nm for both reflectance and transmittance imaging of 

the whole hind paw.  This range of wavelengths was chosen to ensure that the 

multispectral imaging system could capture the electromagnetic regions with variability 

in absorption of haemoglobin and water. Imaging for reflectance and transmittance 

ensured that spectral data from deep and superficial tissue layers were detected.  

 
For the imaging of live, anaesthetised mice, the structural and functional design of the 

imaging system had to take several things into consideration. It is recommended for 

mouse welfare that the duration of anaesthesia is kept as short as possible.  If 

anaesthesia exceeds 15 minutes, external heat should be applied via a warming mat 

to help maintain the body temperature. The anaesthetic equipment included a tube for 

the administration of isoflourane, a scavenger tube, and a nose cone to fit around the 

face of the mouse. The system had to be easily dismantled for transportation, to allow 
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the location of experiments to vary. And finally, the imaging procedure has to take 

place in a surgery theatre where background light levels may be difficult to control.  

The performance of the imaging system as a whole depended on the performance of 

its components. Before outlining the imaging pathway for reflectance transmission 

imaging (section 5.3.1), the relevant characteristics of the individual components are 

described below. 

5.2.1 Light Source 

The light source used for this imaging system was the Thorlabs OSL1-EC high intensity 

fibre light source, with a tungsten-halogen 150W bulb, coupled to an optic fibre. The 

lamp takes approximately 20 to 40 minutes for thermal stabilisation of the spectral 

emission (section 8.A5). The spectral emission profile ranges from approximately 

390nm to 1020nm and is displayed in Figure 28b. 

 

 

 

Figure 28: ThorLabs OSL1-EC light source for the multispectral imaging system. a) ThorLabs OSL1-EC Tungsten 
Halogen 150W fibre light source. b) Spectral emission profile of the ThorLabs OSL1-EC fibre light source measured 
with an Ocean Optics Flame-s spectrometer. 

 

5.2.2 Filters 

To image at selected wavelengths, two PerkinElmer VariSpec liquid crystal tuneable 

filters were used, a Vis-07 VariSpec covering a wavelength range of 400nm to 720nm 
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and a SNIR-10 VariSpec covering a range of 650nm to 1100nm. The Vis-07 filter has 

a response time of 50ms and an average bandwidth of 7nm, the NIR-10 filter a 

response time of 150ms and an average bandwidth of 10nm. Both VariSpec filters 

possess a 20mm filter aperture, a maximum optical throughput of 500mW/cm2, and a 

wavelength accuracy calculable by Bandwidth/8±0.5nm. The typical transmission 

outside of the bandpass is quoted to be 0.01% or less. The use of liquid crystal 

tuneable filters allows fast, automated, vibrationless switching of bandpass filters 

between imaging wavelengths under computer control.  

 
Light was focussed upon entry and exit of the VariSpec filters. A series of lenses 

focused the light exiting the Thorlabs fibre aiming to collimate light before entry into the 

VariSpec. Likewise, lenses focused the light exiting the VariSpec filter onto the optic 

fibres guiding light to the stage, preventing too much light being lost by absorption into 

the body of the VariSpec.  The fibres were held in place by 3D printed components 

and the lenses used for focusing light were Thorlabs LA and LB lenses with focal 

distances ranging from 35mm to 150mm. The normalised spectral transmission of the 

filters’ transmittance with the Thorlabs OSL1-EC is shown in Figure 29b. 

 

 

 

Figure 29: Spectral transmission of Vis-07 and NIR-10 Varispec filters. a) Photo of the Vis-07 Varispec used to 
bandpass filter selected wavelengths for multispectral imaging. b) Graph showing the normalised transmission of 
the Vis-07 and NIR-10 Varispec filters with spectral input from the Thorlabs OSL1-EC high intensity fibre light source 
in 10nm steps. 
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5.2.3 Illuminating Ring and Optic Fibres 

For the reflectance multispectral imaging application of the system, an illumination ring 

placed around the lens was used for shadow-free illumination of the sample. An 

Edmund Optics 2” fibre optic ring light guide with a working distance from 1.5 to 9 

inches, a wavelength range of 400nm to 2000nm and an output beam angle of 18 

degrees was placed around camera lens for imaging.  

 
In addition, two Thorlabs 91cm, SM1, 5mm core light guides were used to carry the 

illuminating light to the VariSpec filters and from the VarSpec filters to underneath the 

stage platform for the transmittance imaging function.  

5.2.4 Camera 

The camera used in this imaging system was a RetigaExi monochrome firewire CCD 

camera from Qimaging, with 1.4 megapixel (1392x1040), 12 bit digital output, flexible 

exposure time control (10μs to 17.9 minutes), gain control (0.7 to 30x gain), offset 

(-2048 to 2047), and optional binning. The quantum efficiency of the camera adapted 

from published graphical data is shown in Figure 30b (176). The Retiga EXi was 

coupled with a 3.3x macro zoom, c-mount (MLM3X-MP 0.3X-1X 1:4.5) lens from 

Computar, with a 90mm focusing distance, and variable magnification from 0.3x to 1.0x 

and variable f-stop from F4.5 to F22 due to an inbuilt manual iris ring. The lens settings 

used in the system, addressed in section 5.3.3, allowed focusing over an area of 40mm 

x 30mm from a distance of 100mm.  

5.2.5 Polarisers, Diffuser and Mirror 

Several additional optical components were used to alter the path or properties of the 

filtered light, moving through the system. A Thorlabs reflective neutral density filter 
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Figure 30: Quantum efficiency of the RetigaExi CCD camera. a) The RetigaExi monochrome firewire CCD camera 
used in the multispectral imaging system. b) Values of quantum efficiency as a function of wavelength for the 
RetigaExi (176). 

 
ND = 4.0 was used as a mirror to reflect light exiting the light guide at 90 degrees for 

illumination from under the stage. This reflected input light was homogenised with a 

Thorlabs circle tophat diffuser (177), with flat intensity through a 50 degree scattering 

angle around the surface normal and a wavelength range from 380nm to 1100nm. Two 

linear polarisers were positioned in the system immediately after the diffuser and 

directly in front of the camera lens (section 5.3.1.2). The first polariser, set into the 

stage, was a 25mm x 25mm Wire Grid reflective polarising film from Edmund Optics 

(178), Extinction ratio 4250:1, with a wavelength range extending from 400nm to 

1200nm. In front of the lens was a Thorlabs linear polariser with extinction ratio 1000:1 

and a quoted optimal wavelength range from 600nm to 1100nm (polarisation was 

found to be sufficient for the purposes of this system below 600nm).  
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5.2.6 Structural Components 

Additionally, the unique requirements for the set-up of this system meant that several 

custom structural components were necessary. The stage, a holder for the ring optic 

fibre, a holder for the polarising filter, and a shade for blocking background light from 

the stage platform (Figure 31a - d) were designed using openSCAD and Slic3r 

software, then printed in black PLA plastic using a 3D printer. The stage was designed 

to allow the addition of a warming mat for the anaesthetised mouse (Figure 31c) and 

the additional components were designed so that the ring optic light was held at a 

consistent working distance of 9cm and the camera lens at 10 cm from the stage 

platform (Figure 31a, b and d) and directly above the polarising filter set into the stage.  

5.2.7 Additional Components  

A black non-reflective coating was used to cover stage imaging platform and the 

background light block, to try and reduce stray light effects. Acktar Spectral BlackTM 

coated foil was used, which has a hemispherical reflectance ranging between 2% in 

the visible wavelengths to approximately 2.5% in the NIR. Other components of the 

system included a laptop for controlling the equipment and storing the data and a clamp 

stand to hold components of the system in place. 

5.3 Experimental Method Development  

5.3.1 Pathways of Light for Reflectance and Transmittance Imaging 

5.3.1.1 Reflectance Imaging 

Reflectance imaging is designed to take spatial and spectral data for the diffusely 

reflected light of an object of interest. For reflectance multispectral imaging, the 

broadband light emitted from the tungsten halogen lamp was filtered through the two 
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Figure 31: OpenSCAD designs for 3D printed structural components of the system rendered in Meshlab. The 
images show a) a holder for the ring optic component. b) A structure to go around the stage for the dual purpose of 
blocking background light and fixing the height and relative position of the camera lens and ring optic arrangement. 
c) The imaging stage with a hole in the imaging platform for a diffuser, and a differential height to allow the addition 
of a warming mat. d) A holder for the polarising filter and camera lens. 

 
 

Varispec filters (section 5.2.2) in sequence, resulting in a range of illuminating 

wavelengths from 480nm through to 1000nm. Software allowed each of the individual 

Varispec filters to be operated automatically, matching the filter wavelength switching 

to the exposure times of the camera. The changeover between the different filters was 

manual.  

 
The sample was illuminated sequentially with the chosen wavelengths through the ring 

optic arrangement around the camera lens. This arrangement produced relatively 

uniform, shadow-free illumination of the subject. The coefficient of variation of light 

intensity (averaged across all wavelengths) was 12.5%, 9.2%, 9.9% and 9.7% for the 

2%, 50%, 75% and 99% reflectance standards respectively, giving an indication of the 

intensity variation of the projected light across an 8.04cm2 area. Reflected light was 
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then detected and imaged by a CCD camera. Figure 32c shows a schematic describing 

the light path through the imaging system for reflectance.  

5.3.1.2 Transmittance Imaging 

For the transmittance imaging protocol, the same set-up was maintained for the 

Varispec filters and the light source, allowing continuity in the experiment between 

reflectance and transmittance imaging. By replacing the ring optic fibre with a separate 

optic fibre at the output of the Varispec filter, the filtered light could be directed 

underneath the platform holding the subject of imaging. The 3d-printed stage was 

designed to hold a mirror that reflected the light output from the fibre at 90 degrees.  

 
In order to get flat illumination of the subject, the light from the optic fibre was first 

passed through a diffuser, before passing through a linear polariser in the base of the 

stage. The imaging object was therefore illuminated from below by widefield, linearly 

polarised light. This arrangement made it possible to calibrate and calculate the 

transmittance spectra. 

 
A second polariser was placed in front of the lens of the camera at a polarisation angle 

90 degrees to the first. Photons multiply scattered through the imaging object would 

be depolarised before emission from the tissue and would therefore be transmitted 

through polariser in front of the camera lens. Photons exiting the stage and travelling 

directly to the second polariser would remain polarised and therefore be blocked. The 

beneficial effect of such a system is blocking the background light of the stage from 

detection with the camera, preventing overexposure and bloom artifacts in the images. 

Figure 32d shows a schematic of the transmittance imaging pathway through the 

imaging system.  
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Figure 32: Set-up of the multispectral imaging system. a) A photo showing all components of the full multispectral 
imaging system. b) A photo of the imaging stage, with the ring light illumination and RetigaExi camera mounted on 
a clamp stand. c) A schematic of the reflectance mode of imaging where filtered light illuminates the stage platform. 
d) A schematic presenting the transmittance mode of imaging where the filtered light illuminates the sample through 
a polariser set into the stage. 

 

5.3.2 Spectral Calibration of the Imaging System 

The aim of the multispectral imaging system was to extract the percentage reflectance 

or transmittance of the incident light for a series of wavelengths, spatially resolved 

across an imaged object. Hence calculating the percentage of reflected/transmitted 

light was dependent on knowing the value of the incident intensity.  

 
Calculating the incident intensity of the illuminating light for the system across all 

imaging wavelengths is a function the light source output spectra, convolved by the 
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wavelength dependent efficiencies of the Varispec filters, the optic fibres, the camera 

quantum efficiency, any additional effects from optical components, and geometry-

dependent effects. Given that not all of these quantities were known and some would 

be difficult to measure, a calibration method using optical standards was used as a 

proxy to direct calculation of incident intensity.  

 
The images produced by the system were calibrated using diffuse reflectance 

standards for reflectance and neutral density filters for transmission, allowing 

calculation of percentage reflectance/ transmittance by dividing the object image by an 

image of a known optical standard. A description of the reflectance standards used for 

calibration is given in section 4.3.2. Data extracted from published graphical results for 

hemispherical reflectance of the standards used in this project are displayed in Figure 

33a (174). This method of calibration required that the imaging settings were kept 

constant, the tile was larger than the object, and assumed Lambertian reflectance for 

the tile and tissue (113). Equation 12 describes the process of reflectance calibration.   

                                                             [R] =  
ൣ୍ోౘౠ౛ౙ౪൧ି[୍ీ౗౨ౡ]

[୍౎౛౜౏౪౗౤ౚ౗౨ౚ]ି[୍ీ౗౨ౡ]
                                                       (12) 

 
where [R] is an image where the pixels represent the percentage of reflected light, and 

[IObject], [IDark], and [IRefStandard] are images of the object of interest at sequential 

wavelengths, the dark noise, and the reflectance standard respectively.  

 
For transmission calibration, the polariser directly in front of the lens was removed and 

an image was taken of the light coming through the diffuser and polariser inset into the 

stage. To reduce the light intensity to a level that would not overexpose the CCD, a 

Thorlabs reflective ND filter of optical density 2.0 (transmission varies from 0.72% 
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transmission at 480nm to 1.20% transmission at 1000nm) was positioned in front of 

the stage polariser, whilst keeping the imaging conditions constant. Thus the relative 

intensity of the input light for transmission could be measured, and the transmittance 

of the object calculated by division with images of the illuminating light. Figure 33c 

shows published data of wavelength-dependent transmission for the ND filter (179) 

and Figure 33d displays the transmission for the polariser. Equation 13 describes the 

calibration of the transmission images. 

                                                      [𝑇] =  
ൣூೀ್ೕ೐೎೟൧ି[ூವೌೝೖ]

[ூಿವమ]ି[ூವೌೝೖ]
 ×  

ௌಿವమ೟ೝೌ೙ೞሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃑

ௌು೚೗ೌೝഢೞ೐ೝሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃑
                                               (13) 

 
where [T] is an image where the pixels represent the percentage of transmitted light 

and [IObject], [IDark], and [IND2] are images of the object of interest at sequential 

wavelengths, the dark noise, and the ND2 filtered light respectively. Multiplying by the 

ND2 filter transmission efficiency per wavelength S୒ୈଶ୲୰ୟ୬ୱ  and dividing by the 

transmission of the lens polariser S୔୭୪ୟ୰୧ୱୣ୰ corrected for the imaging conditions of the 

object and allowed spectrally calibrated calculation of transmittance.  

 
Although it is not accounted for in equation 13, the object transmittance is likely to be 

underestimated due to the effect of calibration by light diffused by the tophat diffuser, 

compared to the Lambertian transmittance of the object (modelled for the mouse paw 

in section 8.A4).  Calculation shown in section 8A4 estimates that transmittance is 

underestimated by a factor of approximately 5.  

 
In order to analyse the data, a GUI was built using Matlab so that the user could select 

areas of interest in the image and extract spectral data by location. An average of the 

spectra was taken over selected circular regions of 69 pixels with 2x2 binning, at a 
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distance of 10cm, corresponding to an area of approximately 0.23mm2. This area was 

chosen so as to reduce noise which was evident in the spectral measurements taken 

from single pixels, but still be small enough to sample distinct regions of a mouse paw. 

Section 6.3.2 shows an example image of area selection in the mouse hind paw using 

the GUI.   

 

 

 
Figure 33: Reflectance and transmittance data required for spectral calibration. a) Data for hemispherical 
reflectance for Labsphere reflectance standards extracted from published graphs for the standards 99%, 75%, 50% 
and 2% tiles used in imaging experiments (174) b) Photo of the aforementioned reflectance standards. c) Spectral 
transmission profile of the Thorlabs ND20A used in multispectral transmission calibration, provided by Thorlabs d) 
spectral transmission of the Throlabs polariser positioned in front of the lens.  

 

5.3.3 System Characterisation and Parameter Tuning 

Understanding of the properties and limitations of the imaging system was critical to 

ensure the data were of the highest possible quality and important to the post-

processing of the data which it may affect. Sections 5.3.3.1 through 5.3.3.2 address 

the effect of changing focal depth and signal to noise ratio (SNR) arising from the 

physical effects of the broad wavelength range used and section 5.3.3.3 addresses the 

effect of varying bandwidth with wavelength in the Varispec bandpass filters.  
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5.3.3.1 Point Spread Function Calculation 

Point spread function (PSF) is a measure of the ability of the imaging system to focus 

on a point source of light. This is a well-known problem for microscopes which are 

diffraction-limited due to the physical properties of light, but in the case of the 

multispectral imaging system described above the challenge lay in the extent of the 

change in wavelength. The increasing wavelength causes the light to refract at a 

smaller angle in the lens, leading to blurring of sharp contrast areas in the image in the 

NIR spectral region. This effect had the potential to limit the usefulness of the data by 

causing spectral smearing and therefore was necessary to characterise.  

 
The macro zoom lens used to focus light onto the CCD is manually operated making 

refocusing time-consuming, and could lead to lack of continuity in the apparent size of 

the object. Given that we aim to compare the spectra for an area on a mouse paw 

through a small group of pixel vectors in the z-stack, change of magnification though 

different wavelength images would risk losing accurate preservation of the local 

spectra.  

 
Changing the aperture size was one possible method of controlling for PSF. 

Decreasing the size of the aperture increased the depth of the focal plane by effectively 

blocking more unfocussed background light. This was beneficial for the reducing the 

loss of focus at the longer wavelengths, but reduced the number of photons reaching 

the CCD and therefore the signal to noise ratio (SNR) of the image. The challenge was 

to choose the aperture to obtain the best compromise between small PSF and high 

SNR. 
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For calculating the PSF and the SNR, a set of images were taken at a series of 

wavelengths and several different aperture settings. The images were of an Edmund 

Optics focusing tile, with an example image included in Figure 34b. All of the images 

for the different aperture settings were taken under the same lighting conditions and 

the same exposure times.  

 
The σ-value of the PSF is a measure of the Gaussian spread where the larger the σ-

value the greater the width of the Gaussian bell-curve, and if convolved with an image, 

the more blurred the appearance of the image. Equation 14 shows the mathematical 

context of the σ-value and  Figure 34a shows the σ-value of the PSF of the focusing 

tile images as calculated by a genetic optimisation algorithm. A single line of pixels 

was isolated from each wavelength image across one of the focusing squares shown 

in Figure 34b. The algorithm then generated random Gaussian distributions according 

the equation 

                                                                      G = ቀ
ଵ

√ଶ஠஢మ
ቁ e

ି
౬మ

మಚమ                                                           (14) 

 
where G is a Gaussian vector, v is a vector the length of the pixel intensities. These 

Gaussians were then convolved with a randomly generated step function representing 

a tile perfectly in focus and the error calculated between the computationally generated 

pixels and the real ones by squared sum of the difference. The random generation of 

numbers occurred inside bounds set by the user to constrain the algorithm and reduce 

the number of iterations required to reach a minimal error value. The algorithm iterated 

until the Gaussian with the lowest error was found.  
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The lens used by the system was a macro lens where the F-stop number was variable 

between 4.5 and 22 according to both the aperture size and the lens position. To isolate 

the effect of changing aperture size on the image, 5 evenly-spaced markers were 

drawn onto the lens varying the aperture from fully open (mark 1) through to half open 

(mark 5).   

 
Figure 34a shows the plot of the σ-value against wavelength for the different markers 

of the aperture settings. 

 

 

Figure 34: Gaussian sigma value describing image blur with changing aperture size. a) Optimal fitting of the σ-value 
for a Gaussian equation to images taken by the multispectral imaging system across the wavelengths range 450nm 
to 975nm. A series of images was taken for an increasing aperture size in the lens, demonstrating the imaging 
effects of narrowing the focal plane. b) Image taken at 750nm and ‘Mark 2’ aperture of an Edmund Optics focussing 
tile used to assess Point Spread Function and Signal to Noise Ratio in the multispectral imaging system.   

 

5.3.3.2 Signal to Noise Ratio Calculation 

Image noise is a combination of Poisson noise and dark current noise. Dark current 

noise is a result of thermal agitation of electrons within the CCD. It follows an 

approximately Gaussian distribution but can result in fixed pattern noise noticeable at 

longer exposure times, due to variability in the sensitivity of individual CCD sensors. 
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This could be corrected for by dark frame subtraction, where an image of equal 

exposure time was taken in complete darkness and subtracted from the data image.  

Poisson noise is a result of statistical variation in the distribution of photons. It has a 

root mean square value proportional to the square root of the image intensity. This is 

generally the primary source of image noise except in low light conditions.  

 
Figure 35 shows the signal to noise ratio calculated from the images of the focusing 

tile. An averaged value was taken from the lighter area of the image (signal) and 

compared to the dark area (noise) in the focusing tile for each individual wavelength 

(180). 

                                                   SNR[dB] =  20 x logଵ଴(
ୖ୑ୗୱ୧୥୬ୟ୪

ୖ୑ୗ୬୭୧ୱୣ
)                                                 (15) 

 
where SNR is the signal to noise ratio in decibels, RMS signal is the root mean squared 

value of a lighter area of the image and RMS noise is the root mean squared value 

from a dark region of the image.  

 
There is an almost linear drop in SNR between the aperture settings for each 

wavelength indicating the effect of Poisson noise (Figure 35). Whilst this effect could 

be countered by brighter illumination or longer exposure times, the intensity of 

illumination was limited by the brightness of the light source and exposure times should 

be kept minimal for live mouse imaging.  
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Figure 35: Signal to noise ratio measured for a series of images of an Edmund Optics focussing tile across 
wavelengths 450nm to 975nm, taken with the multispectral imaging system. Each series of images was taken with 
a change in the aperture size and the data demonstrate the increasing signal to noise ratio with increasing aperture 
size. 

 
The ideal aperture size for the system would therefore be the widest aperture which 

still fell within an acceptable PSF. When imaging, small amounts of blur in the NIR 

were not found to affect the spectral results, increasing the aperture size offered a 

significant improvement in the imaging time. Mark 3 ( F11< Fstop >F22 ) was chosen 

for imaging of live mice because the image blurring was not found to affect accuracy.   

5.3.3.3 Bandwidth vs Spectra  

In the multispectral imaging system, two Varispec filters were used to filter light from a 

broadband illumination source to a series of selected wavelengths. The Varispec filters 

filter light across a series of wavelengths in a Gaussian centering around the desired 

wavelength (see Figure 29).  The spectral response calculated by the imaging system 

did not therefore belong to a single wavelength as was presumed by Monte Carlo 

modelling of the tissue, but was the sum of the spectral response across a series of 

wavelengths. If the true reflectance/transmission spectra of the tissue were non-linear 
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across the wavelengths covered by the Varispec filters spectral bandwidth, then the 

assumption that the image formed from the Varispec-filtered light was representative 

of the single pre-set wavelength would become invalid. However, the effect could be 

insignificant if changes in the spectral response were not detectable. This section 

details the effect that the filter bandwidth had on the calculated spectral response using 

a simulated reflectance spectrum computed by Monte Carlo modelling of the mouse 

hind paw model described in section 3.4.1. To calculate the effect of the filter 

bandwidth, the spectral response functions of the light source output filtered by the 

Varispec filters was measured using a spectrophotometer (Figure 36a). The spectral 

functions were then normalised by dividing the intensity values by the area under the 

curves  (Figure 36b) and convolved by the Monte Carlo spectrum to simulate the 

process of multispectral imaging (Figure 36c).  

Two individual Varispec filters were used to cover the width of wavelengths utilised by 

the multispectral imaging system. The effect of increasing wavelength could be seen 

to increase the bandwidth (full width at half maximum varies from 3.6nm to 9.3 nm) 

lineally for both Varispec filters with increasing wavelength, due to the method in which 

the Varispec filters light. For the Monte Carlo simulated reflectance and transmission 

spectra of the mouse hind paw, this lead to a maximum error of 1.26% at 975nm in 

reflectance and 0.41% at 1000nm for transmission. This error may vary slightly in 

accordance with the spectral response of the tissue. Overall, although there is likely to 

be small difference between the real reflectance values and the ones calculated by the 

multispectral imaging system at longest wavelengths, the characteristic shape of the 

spectra is retained.  
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Figure 36: Variation of Varispec filter transmission bandwidth and its effect on spectral measurements. a) Relative 
intensity of all the sequential wavelengths used in in vivo imaging detected at the stage platform in the reflectance 
configuration of the system. b) Probability density functions calculated from the Varispec Vis and NIR filter 
transmissions at the wavelengths used for biological imaging. c) Modelled reflectance spectra before (blue) and 
after (red) convolution the Varispec spectral functions. d) Modelled transmittance spectra at the wavelengths before 
(blue) and after (red) convolution with the Varispec spectral functions. 

 

5.4 Results 

5.4.1 Phantom Imaging for Validation of Spectral Calibration Method 

To determine the accuracy of the calibration method for reflectance imaging, several 

reflectance standards were imaged and the value for percentage reflectance 

calculated by calibration with the 99% reflectance standard. The tiles were imaged 

separately using wavelengths from 480nm to 1000nm in 10nm steps.  Figure 37a 

shows the results of this experiment. Exposure times, displayed graphically in Figure 

37c were chosen to get an ‘optically flat’ response from the reflectance standards. In 
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total the imaging time for the standards was approximately 73 seconds, excluding the 

time taken to switch the light input from the Varispec filters.  

 
The transmission mode of the multispectral imaging system was verified against 

hyperspectral data from spectrometer on an optical phantom model of skin (photo 

shown in Figure 37d). For the spectrophotometry data, the phantom was illuminated 

through the stage with broadband light, then calibrated by imaging the stage 

illumination though ND2, and dividing the spectral data by the known transmission of 

the filter to recover the spectral transmittance of the phantom. Figure 37b displays the 

transmittance spectra recovered from the multispectral imaging and 

spectrophotometry.  

 
For reflectance imaging, the average reflectance intensity for the calibrated images of 

the 75%, 50% and 2% tiles across the wavelengths of 480 to 1000nm were 74.49% 

(coefficient of variation 0.84%), 51.30% (coefficient of variation 1.32%), and 1.55% 

respectively (coefficient of variation 5.45%). Any inaccuracies in the reflectance data 

may arise from differences in height of the tile surfaces, noise in the images, or 

deviations from the exact reflectance percentage quoted for the tile. For transmittance 

imaging, the absolute difference in percentage varied between 0 and 0.2% between 

the wavelengths of 480nm to 930nm.  

 
For reflectance imaging, the average reflectance intensity for the calibrated images of 

the 75%, 50% and 2% tiles across the wavelengths of 480 to 1000nm were 74.49% 

(coefficient of variation 0.84%), 51.30% (coefficient of variation 1.32%), and 1.55% 

respectively (coefficient of variation 5.45%). Any inaccuracies in the reflectance data 

may arise from differences in height of the tile surfaces, noise in the images, or 



 101

deviations from the exact reflectance percentage quoted for the tile. For transmittance 

imaging, the absolute difference in percentage varied between 0 and 0.2% between 

the wavelengths of 480nm to 930nm.  

 

 

Figure 37: Spectral data from multispectral imaging of phantoms. a) Multispectral reflectance imaging of a series of 
reflectance stands. The average reflectance spectra were calculated from 30 spatially separate measurements in 
the image. b) Normalised multispectral transmission average spectra from 30 spatially separate measurements of 
an optical skin phantom, compared to a transmission spectrum measured by spectrometry. c) Exposure times used 
per wavelength. d) Photo of the skin phantom used in transmittance imaging. 

 

5.4.2 Phantom Imaging 

Imaging an object with known optical properties allows a comparison between the 

reflectance spectra predicted by MCML modelling and the reflectance spectra 

evaluated by the multispectral imaging system.  
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This section details the Monte Carlo modelling of an optical phantom (INO biomimic 

optical phantoms), in comparison with the reflectance spectra recovered from the 

multispectral imaging process. The homogenous, cuboidal, phantom (Figure 38c) had 

known reduced scatter (μs’) and absorption coefficients (μa) for the wavelength range 

590nm to 1000nm, recovered from a geometry-specific fitting using time-resolved 

diffuse optical imaging data (181). Figure 38a displays the optical properties of the 

phantom. For the MCML program input, the μs’ values were used for μs with an 

anisotropy (g) value of 0, and the μa values were used directly, together with a depth 

value of 25mm. The reflectance data from the multispectral imaging system were 

calibrated as above with imaging wavelengths from 480nm to 999nm in steps of 10nm, 

and an average reflectance spectrum was computed from 30 randomly selected areas 

of the image. Figure 38b displays the MCML modelled reflectance spectra with the 

average of the measured spectra. The experimental set-up was designed so that the 

surface of the block was at the same imaging distance as the corresponding image of 

the reflectance standard.  

 
Figure 38b displays the recovered spectral reflectance of the optical phantom as 

compared to the reflectance spectra modelled using the MCML Monte Carlo method. 

There is a clear resemblance in the shape of the spectra, showing that the effects of 

the phantom’s optical properties are broadly recognisable in the reflectance spectra 

detected by the multispectral imaging system. However, the error between the 

modelled spectra and the imaged spectra is maximum at 4.7% for 750nm.  
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Figure 38: Spectral data from multispectral imaging and Monte Carlo modelling of an INO Biomimic optical phantom. 
a) Absorption and reduced scatter coefficients for INO Biomimic optical phantom sourced from reference (181). b) 
Comparison of the MCML modelled reflectance spectrum for the optical phantom vs the reflectance spectrum 
recovered from multispectral imaging. c) Photo of the INO Biomimic optical phantom. 

 
Reasons for the difference between the modelled and imaged spectra is likely due to 

the difference between the geometry of the image in reality vs the point-source, semi-

infinite set-up assumed in the MCML model. In addition, the MCML model assumes 

single wavelength data whereas the imaging system images across the bandwidth 

imposed by the use of the Varispec filters. Also, approximately 2% of the reflectance 

calculated in MCML is due to specular reflectance, which theoretically is not detected 

by the imaging system.  

5.5 Discussion  

5.5.1 Discussion of Results 

The multispectral imaging system detailed above offers the ability to take multispectral 

data in both a reflectance and transmittance geometry at a flexible series of 
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wavelengths, across the visible and near infrared spectrum, for relatively small objects. 

In this case, the design and layout of the stage is especially suited to the imaging of 

the hind limbs of small animals, and the implementation of imaging meets the demands 

of the application. Comparing this system to commercially available imaging systems 

is apposite, although indirect, due to considerable variation in the method of data 

gathering in commercial multispectral and hyperspectral imaging systems. Relatively 

cheap, fast, solutions for multispectral imaging exist in the form of multispectral 

cameras with a small number of bandwidths fixed by filters or LED illumination. The 

advantage of these kinds of systems is the potential for fast data acquisition, ease of 

use, and low cost. The disadvantage is the inflexibility and low spectral resolution. 

However, this may represent a potential future avenue for this work if a small number 

of optimal imaging wavelengths could be found to work effectively in diagnosing 

symptom severity in mouse models of murine arthritis. The system has comparatively 

lower spectral resolution than other commercially available hyperspectral imaging 

systems such as push broom cameras, but such cameras are generally expensive, 

they rely on moving the object relative to the camera and require time to capture a full 

image.   

 

5.5.2 Limitations 

There are several caveats of the imaging system that influence the recovered 

reflectance and transmittance data. In reflectance imaging, due to the method of 

calibration used, it is assumed that the object of interest is flat and is imaged at the 

same distance as the reflectance standard. Given that intensity has an inverse 

proportional relationship with distance, if the surface height of the object varies, then 
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the calculated reflectance of the object may vary linearly in wavelength according to 

equation 16 

                                                                   I ∝  
ଵ

ୢమ
  or  

୍భ
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=  
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ୢభ
 మ                                                             (16) 

 
where I is intensity and d distance. Similarly, the angle of the imaged surface compared 

to the reflectance standard will also affect the calculated percentage of reflectance.  

For a lambertian surface, Lamberts Cosine Law states that the radiant intensity of a 

surface is directly proportional to the cosine of the angle between the surface normal 

and the measurement angle (equation 17). The same principle applies in reverse for 

illuminating a surface at a non-perpendicular angle. In the case of topologically 

heterogeneous objects such as the mouse hind paw, the incident illumination will not 

always be normal to the surface and hence detected reflectance will be reduced for 

uneven areas according to the cosine law  

                                                                        I୭ = Icos (θ)                                                                  (17) 

 
where Io is the detected intensity, I is the input intensity, and θ is the angle between 

the direction of measurement and the surface normal.  

5.5.3 Conclusion 

This chapter describes the development of a multispectral imaging system made 

specifically for the purpose of imaging mouse paws in a reflectance and transmittance 

geometry.  Combining multispectral reflectance and transmittance (or multispectral 

imaging with fluorescence imaging) is recognized as a method of increasing data 

output (182–186), but is still relatively rare in medical multispectral/hyperspectral 

imaging (187). Tuneable filters were used which are common in imaging stationary 
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objects and generally faster than point scanning methods (188). Overall, the elements 

of the design of the system are relatively standard methods used in multispectral 

imaging, but geared towards the novel function of imaging mouse feet. The following 

chapter introduces the results of multispectral imaging for mouse models of arthritis. 
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6 Multispectral Imaging of Rheumatoid Arthritis Mouse Models  

6.1 Introduction 

This chapter presents the results of multispectral imaging and analysis for two different 

mouse models of rheumatoid arthritis:  TNF dARE and the K/BxN serum transfer, 

which have been described previously (section 2.4). The results of the imaging have 

been analysed and compared to other indicators of disease, with the aim of assessing 

the mice for the severity of their pathology and gaining an insight into the underpinning 

physiology. An experiment was also carried out to see if arthritis could be detected 

earlier using the multispectral method compared to standard clinical measurements of 

deformity or swelling which only capture late stage disease in TNF dARE mice and 

degree of swelling but not composition in K/BxN serum transfer mice.  

The symptoms exhibited by the TNF dARE and K/BxN serum transfer mouse models 

of RA manifest as erosive (characterised by progressive joint erosion and deformity) 

or inflammatory (characterised by measurable swelling of the paw) respectively. The 

initial results from spectrophotometry suggested that these different pathological 

processes result in differing spectral characteristics. This chapter extends the research 

with multispectral imaging of live mice and validates the results by correlating them 

with different measures of disease progression including clinical scoring, calliper 

measurements of paw swelling, scoring of H&E stained histology slides to measure 

the inflammatory infiltrate and degree of bone erosion, and microCT bone erosion 

analysis. 
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6.2 Equipment and Methodology 

6.2.1 Mouse Models 

The experiments were carried out on two different mouse models of rheumatoid 

arthritis. The first mouse model, the TNF dARE, is a classically erosive, genetic model 

of RA which shows symmetrical progressive symptoms beginning at approximately 5 

weeks of age (detectable by histology), manifesting in clinically detectable joint 

deformation and discolouration at approximately 12 weeks; an age at which the 

animals are commonly used in experiments for investigating fully developed arthritis. 

The second mouse model, the K/BxN serum transfer, is distinctly different from the 

TNF dARE model, exhibiting non-symmetrical swelling and a ‘redness’ of colouring, 

often affecting individual digits or areas of the foot. The pattern and number of joints 

affected in each individual mouse is variable and unpredictable. The arthritis peaks 

between 7 and 12 days after the initial injection of K/BxN serum and is clinically 

resolved after 21 days. All experiments were carried out at the University of 

Birmingham, UK, following strict guidelines governed by the UK Animal (Scientific 

Procedures) Act 1986, under PPL licence number 70/8003 and approved by the local 

ethics committee (BERSC: Birmingham Ethical Review Subcommittee). All mice were 

fed a standard chow diet and maintained on a 12 hour light-dark cycle. 

6.2.1.1 TNF dARE 

Details of the TNF dARE colony used in experiments have been introduced in section 

4.2.3.1. Two groups of heterozygous C57BL/6 TNF+/dARE mice and their normal 

companion TNF+/+ littermates were imaged using the multispectral system described 

in section 5. Both imaged groups contained six female mice, three of which were 

TNF+/dARE. For data described in section 6.4.1.1 the mice were aged 12 weeks at the 
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time of imaging, and for data in section 6.4.1.2 the mice were imaged at three 

timepoints from the ages of 5 weeks, 7 weeks, and 9 weeks old. 

6.2.1.2 KBxN ST 

Imaging data from K/BxN serum transfer mice are discussed in section 6.4.2. 6-8 

week old male C57Bl/6 mice, supplied by Harlan, were injected intravenously with 

100l K/BxN serum (a gift from Harris Perlman, Northwestern University, USA). 

Arthritis was monitored daily and was evident clinically at between 1-2 days following 

injection. Mice were imaged on day 12 following injection. 

6.2.2 Mouse Imaging  

For all imaging experiments, mice were anaesthetised for the duration of the imaging 

session using 3% isoflourane and a standard anaesthetic set up. A nose cone was 

used to maintain anesthetisation of the mouse during imaging session. The mouse 

was positioned lying prone on top of a warming pad with one hind paw extending 

backwards and resting on top of the stage polariser. The right paw was imaged first, 

then the left paw was moved into position above the polariser and imaged second. Full 

acquisition of reflectance and transmittance imaging data took approximately 7 

minutes per mouse and mice were culled by a schedule 1 procedure, once all imaging 

data had been obtained. Hind limbs were then dissected for microCT and histology.  

6.2.3 Histology 

Staining sections of the dissected paws with haematoxylin and eosin allows the soft 

tissue pathology and bone erosion to be seen and scored at a cellular level. Full 

brightfield images of the stained sections were taken with a Zeiss Axioscanner. The 

histology scoring procedure was then carried out (by Sophie Glinton) whilst blinded to 
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the genotypes of the mice. The protocol was as follows: for slides where the cartilage 

interface of individual joints could be clearly seen on the imaged section, the joints 

were given a score of 0 – 3 for severity. 0 = normal with no evidence of inflammation, 

1 = presence of inflammatory infiltrate without joint erosion, 2 = inflammation plus 

erosion of cartilage and/or bone but normal joint architecture intact; 3 = inflammation 

with severe joint erosions to the extent that joint architecture appears deformed. 

Examples of joint images are given in Figure 39. A mean score was taken for all the 

joints evident on each slide and for all the slides belonging to each mouse to give an 

average score for arthritis severity for each foot. 

 

Figure 39: Example images demonstrating scoring joints affected by arthritis in increasing severity from left to right. 
Score 0: no evident inflammation around the joint; score 1: visible inflammatory infiltrate but no damage to the joint 
structure; score 2: evidence of inflammatory infiltrate and erosion of the hard tissues; score 3: infiltrate with clear 
deformation of the joint. 

 

6.2.4 MicroCT Imaging and Bone Erosion Analysis 

After the mice were culled, hind legs were dissected at the hip joint and stored in a 

10% formalin solution for a period of 24 hours before transferal to 70% ethanol. 

Samples were imaged using a SkyScan 1172 micro-CT scanner from Bruker micro-

CT, which was operated using the accompanying software. The microCT settings were 

adjusted for good contrast for bone imaging: A voltage of 60kV and a current of 167uA 

was used in conjunction with an aluminium filter. Exposure time was set to 580ms with 

a rotation step size of 0.45 degrees and a frame average of 4. Raw data was then 
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reconstructed using nRecon software (Bruker). Flat field correction was performed and 

if necessary, misalignment compensation applied. Images were then reconstructed to 

an approximate image volume of 2000 x 2000 x 1187 voxels. CTAnalyser v1.12 (176) 

software was used to extract an isosurface mesh of the bony structures in the mouse 

hind paw. A global threshold was used to isolate bones from background and kept 

consistent between samples. The mesh was then extracted through a marching cubes 

algorithm and stored in polygon file format (PLY) (190). In order to meet the 

requirements for the microCT analysis software (see section 2.5.2.2 for description) 

(105), further mesh processing was carried out in Meshlab (1.3.2), open source 

software for mesh manipulation. Poisson surface reconstruction was used to smooth 

the appearance of the mesh. The inner surfaces of the bones were selected by setting 

a threshold with an ambient occlusion filter, then deleted, leaving only the outer 

surfaces of the bone. The complexity of the mesh was reduced through quadric edge 

collapse decimation to the approximate point density of the atlas used for registration 

in the software. Processing the samples gives a bone erosion ratio per bone, or the 

proportion of the bones surface area affected by erosions.  

 
In the experimental results shown in this chapter either an average bone erosion ratio 

was taken as a mean of all the individual bone erosion values for each of the bones in 

the hind paw, or a mean was taken for a particular region of the foot by dividing the 

bones into separate areas as shown in Figure 40 corresponding to the areas analysed 

in the multispectral imaging analysis.  
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Figure 40: A mouse hind paw mesh generated from a microCT scan and coloured to indicate how the bones of the 
hind paw were divided into areas for regression analysis with multispectral imaging results.  

 

6.2.5 Image Registration  

Comparatively long exposure times at the longest and shortest wavelengths, the time-

consuming switching between the two Varispec filters, and the breathing motion of the 

anaesthetised mouse meant that small movements of the paw occurred between the 

images taken at different wavelengths. The GUI method for extracting spectra from 

areas of the image relies on the same pixel region of each wavelength frame 

corresponding to the same region of the paw and therefore images were registered to 

align the paw within the multispectral image cube, for both the reflectance and 

transmittance data. The images were registered using a rigid, pixel-intensity based 

registration method within the Image Processing Toolbox in Matlab. Prior to 

registration, the images were calibrated and dark corrected, then registered to the 

image frame taken at 690nm.  
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6.2.6 Principal Component Analysis  

A statistical method was required to extract meaningful information from the 

multispectral data. The data produced from the GUI data extraction is 

multidimensional, effectively incorporating 520 wavelengths, from 4 different foot 

locations, for each separate hind paw of each separate mouse in an imaging session. 

In the experiments described in sections 6.4.1 through 6.4.2, principal component 

analysis (PCA) was used to analyse all of the data produced from the GUI data 

extraction (section 6.3.2) to assess the spectral changes occurring with arthritis 

symptoms.  

PCA calculates an orthogonal linear transformation of the data covariance matrix 

through Eigen decomposition, which maps the data to a new set of axes, known as 

principal components (191). The first principal component, or eigenvector, has the 

largest associated loading (eigenvalue), meaning that it corresponds to the direction 

of the largest variation in the data. Subsequent principal components describe 

directions of variation in order of descending size. Since most variation in the data is 

generally captured by the first few eigenvectors, the dimensionality of the data can be 

reduced. 

When performed on the multispectral data, PCA also produces a series of scores for 

each individual spectra, describing the coordinates of the spectra when transformed 

into the new axes of the principal components, effectively ranking the mice for how 

pronounced their spectral variation is. PCA for all mouse imaging sessions was 

computed using functions available in the Statistics and Machine Learning toolbox of 

Matlab.  
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6.2.7 Linear Discriminant Analysis  

In common with PCA, linear discriminant analysis (LDA) defines a transformation of 

the data into a more useful form. In the case of LDA, the input data are classified 

manually into 2 or more groups and the algorithm defines an axis (comparable to the 

eigenvectors in PCA) which best separates the two groups (192). Scores of individual 

data points can then be defined according to the axis. In section 6.4.3, LDA is used to 

define axes which best separate the spectra resulting from changes in chromophore 

concentrations in the Monte Carlo model (section 6.6.1).  

 

6.3 Experimental Method Development  

6.3.1 Multispectral Images of a Mouse Hind Paw 

Figure 41a and c show raw images for one complete set of reflectance and 

transmittance data from an anesthetized mouse’s hind paw, taken with the system 

described in section 5.3.1. In Figure 41b and d the images have been false-coloured 

according the imaging wavelength to represent their physical appearance when 

imaging.  

Figure 41 shows that imaging the paw at different wavelengths changes the 

appearance of the paw in both reflectance and transmittance. More blurring of the 

image is evident at the longest wavelengths, due to the different refraction of 

successive wavelengths within the lens altering the focal plane of image. There is 

also some specular reflectance apparent on the paw, but this was not found to be a 

major obstacle in processing the data. In the transmission images, it is clear that 

transmission of the visible wavelengths is very low for most of the foot, although most 
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wavelengths traverse the toes. However, for the longer wavelengths the effect of 

reduced absorption and scatter can be seen as the whole foot is transilluminated.  

 

 

 

Figure 41: Reflectance and transmittance images taken at a series of wavelengths for a single normal mouse hind 
paw. a) Raw reflectance images of a mouse hind paw taken at the annotated wavelengths. b) The images from a, 
false-coloured according to the wavelength of illumination. c) Raw transmittance images of the same mouse paw 
taken at the same wavelengths using the twin polarizer transillumination system. d) False-coloured transmittance 
images of the same mouse hind paw. 

 

6.3.2 Multispectral Data Analysis 

The raw images taken by the multispectral imaging system were processed in order to 

extract the spectral characteristics of the mouse feet (Figure 42). A GUI system was 
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designed in order to manually select regions of the feet for spectral analysis. As 

described in section 3.3.1.2, the images of the paw were analysed according to the 

four areas of the heel, the joints, the midfoot, and the toes due to broad anatomical 

differences in the structure of the foot that were found to influence the spectral 

properties of the tissue. For further spectral analysis, 10 spectra were taken from each 

area and averaged so that 4 mean spectra corresponding to the 4 paw regions could 

be taken from each multispectral dataset.  Figure 42 details the workflow of the spectral 

analysis method with an example from one mouse paw image.  A full set of images 

taken at each wavelength for reflectance and transmittance for one example mouse 

paw is included in the appendices (section 6.3.1).  

 

Figure 42:  Process of multispectral image analysis using a custom Matlab GUI to extract spectral data from regions 
of interest. a) Image of a mouse hind paw taken from the multispectral system, made by averaging all spectral 
frames. b) Image showing the areas manually selected for spectral analysis according to the four anatomical areas 
toes, joints, midfoot and heel. c) Graph showing all the reflectance spectra extracted from the image by the circular 
regions indicated and colour-coded in b. d) The reflectance spectra calculated from the mean of the 10 areas 
selected for each region of the hind paw.  

 

6.4 Results  

6.4.1 Multispectral Imaging of the TNF dARE Rheumatoid Arthritis Model 

Multispectral imaging was performed on TNF dARE mice in a blinded, randomised 

experiment. Section 6.4.1.1 details the imaging of a group of six TNF dARE mice at 12 
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weeks of age, taking multispectral data at a time period when the mice are expected 

to exhibit symptoms detectable by manual scoring. Three of the mice were TNF dARE 

heterozygous and the remaining three mice were normal control littermates. The 

results of imaging were compared with the results from histology, manual scoring and 

microCT data.  

 
Section 6.4.1.2 details a series of multispectral imaging sessions on TNF dARE mice 

taken from the ages of 5 weeks to 9 weeks when the mice have histological signs of 

inflammation, but may not yet outwardly display clinical symptoms. In general, 

heterozygous TNF dARE mice first exhibit detectable signs of arthritis in histology 

around 3 weeks old (193) and the clinical symptoms (swelling, discolouration, 

deformation, behavioural changes) become detectable around 6 – 8 weeks (55). This 

phase where arthritis symptoms are established is important in research, as the early 

phase of rheumatoid arthritis represents a window of therapeutic opportunity which is 

thought to influence long-term prognosis (194,195). The results of these two 

experiments are discussed together in section 6.4.1.3. 

6.4.1.1 TNF dARE 12 Week Multispectral Imaging 

The multispectral imaging method described above (section 6.3.2) was used to image 

the TNF dARE mouse model of rheumatoid arthritis. The data has been compared to 

a number of other metrics for assessing the severity of inflammatory symptoms 

(section 6.4.1.1.4). The mice were scored according to the clinical scoring method 

immediately prior to imaging (see section 2.5.1.1 for scoring sheet), then the spectral 

information from the imaging analysed as described above (section 6.3.2 and 6.2.6). 

The same process has been used in all subsequent experiments for the analysis of 
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multispectral reflectance data. In all experiments, manual scoring was carried out 

blindly by a researcher experienced in in vivo models of RA and with these models in 

particular. The details of the mice used in this experiment are discussed in section 

6.2.1.1. 

6.4.1.1.1 Reflectance 

Figure 43 displays the mean spectral reflectance from the healthy group and the 

arthritic group, where the spectra have been min-max normalised to emphasise the 

wavelength-dependent spectral variation between the two groups. Figure 44a displays 

the score along the 1st principal component for each area of the foot individually 

grouping the spectra for that region from all mice. PCA was performed on the raw (non-

normalised) reflectance data. The raw spectral reflectance data can be seen in Figure 

44b where mean spectra for each foot region have been superimposed on to a 

statistical shape model (SSM) (196). The SSM’s demonstrate the effect of the variation 

captured in the 1st principal component, for individual anatomical regions where the 

variation in the 1st principal component has been projected around the mean spectral 

response by 3 standard deviations either side. 

The 1st principal component (PC) was found to be the most effective in being able to 

split the group of healthy mice from their arthritic littermates. For this experiment, the 

1st PC of the reflectance data explains a mean of 95.3% of the data variance for the 4 

areas, computed by calculating the percentage of the eigenvalue for the 1st PC divided 

by the sum of all eigenvalues. 

Reflectance multispectral imaging of the TNF dARE mouse revealed a general 

decrease in intensity with arthritis symptoms which can be seen in Figure 44b, as well 
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as a spectral shape change where reflectance in the 480nm to 550nm and 600nm to 

800nm spectral regions are relatively decreased, apparent in Figure 43.   

 

Figure 43:  Min-max normalised reflectance spectral data from four areas of the TNF dARE mouse hind paw, from 
six 12-week old mice, N=3 TNF dARE and N=3 normal with two paws imaged per mouse giving a total of twelve 
multispectral datasets. Mean spectra for the normal group are displayed In blue with standard deviation shown as 
a pale blue shaded region and in red for the TNF dARE data. a) Average normal vs average TNF dARE reflectance 
spectra for the heel region of the hind paw b)  Average reflectance min-max normalised spectra for normal vs TNF 
dARE for the middle region of the foot. c) Average reflectance min-max normalised spectra for the joints region of 
the foot. d) Average min-max normalised spectra for the toes region of the foot.  

 
Monte Carlo modelling of the arthritic mouse hind paw in chapter 3 showed a decrease 

in reflectance across all wavelengths, which is maximal between 600nm and 700nm. 

This suggests that as modelled, there may be an increase in absorbing chromophores 

present in the tissue, particularly an increase in blood volume fraction and a decrease 

in oxygen saturation.   
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Figure 44: Results from principal component analysis of reflectance spectral data from four areas of the TNF dARE 
mouse hind paws from six 12-week old mice, N=3 TNF dARE and N=3 normal with two paws imaged per mouse 
giving a total of twelve multispectral datasets. a) Scores for the 1st principal component extracted from PCA of all 
the reflectance data for each individual area of the foot.  Spectra from each mouse paw are labeled m1 to m6 with 
right and left hind paws indicated by R and L. Each have been colourised according to their genotyping. b) 
Reflectance spectra for each hind paw from the group of 6 mice, separated into 4 anatomical regions. The spectra 
have been superimposed onto a statistical shape model describing 3 standard deviations of variation within the 1st 
principal component. c) Normal mice mapping of 1st PC score value for individual pixels of the four selected regions 
of the paw. d) TNF dARE mice mapping of 1st PC score value for individual pixels of the four selected regions of 
the paw. 

 
Using PCA to isolate directions of variation in the dataset exploited the fact that the 

primary cause of variation between the mice appeared to be a result of physiological 

changes induced by arthritis symptoms. Evidentially, the 1st principal component of 

the data represented an average of 95.3% of variance for the 4 anatomical areas and 

separated the normal mice from the TNF dARE mice, while (for this experiment) there 
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was no separation in subsequent PC’s, which seemingly did not contain variation 

relating to arthritis symptoms.  In the reflectance data shown in Figure 44b, the 

variation explained by the 1st principal component refers to a decrease in reflectance 

across all wavelengths, particularly affecting the 600nm to 800nm spectral region. It is 

likely that this corresponds with ‘greying’ of the paw described in the TNF dARE mouse 

model and is likely due to several physiological processes occurring in tandem. The 

1st PC scores have been represented visually in Figure 44c and d where the PC score 

is given for individual pixels and colormapped where blue is a higher score and red is 

a lower score.  The lower average score can be clearly seen for the TNF dARE mice 

(Figure 44d) compared to the normal mice (Figure 44c) and some TNF dARE displayed 

a more heterogenous score across the paw, for example M3L, compared to others 

which appear more consistent, for example M6R. 

 
The PCA analysis displayed in Figure 44a also highlighted details not revealed by 

standard clinical scoring methods: There appeared to be variation between paw 

regions and between hind paws of the same mouse despite being a symmetric model 

of arthritis. There was also apparent variation within the group of normal mice, 

demonstrating why scoring by eye, which relies on normal mice being scored 0, may 

be problematic.  

The significance of the difference between the two groups of spectra was tested using 

the method described in section 4.5, where a matrix describing the sum of the RMS 

difference per wavelength of every spectra was tested by a 2 factor student t-test to 

assess whether the intergroup difference was significantly more than the internal group 

difference. For the reflectance data of the TNF dARE and normal mice, the difference 
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was significant across all areas (p-values: heel = 0.0112, midfoot = 0.000859, joints = 

0.000111, toes = 3.10e-07). 

6.4.1.1.2 Transmittance 

The transmittance data from the multispectral imaging experiment has been analysed 

similarly (figure 45 and figure 46). In the case of transmittance, PCA was performed 

on min-max normalised data rather than the raw data due to the influence of the 

thickness of the tissue on spectral variation. When performed on the raw spectral data, 

the variation capturing the changes in arthritis were split across two principal 

components, whereas PCA on normalised data split the groups of mice in the 1st 

principal component explaining 91.5% of the variation. This method of analysis was 

used for all subsequent transmittance mouse imaging experiments discussed below.  

In the normalised transmittance data (figure 45), a trend for a change in the spectral 

shape can be seen where transmittance is relatively decreased in the 600nm to 800nm 

region of the spectrum. 

The peak in increased absorbance at 600 – 700nm in both the reflectance and 

transmittance spectra is strongly indicative of decreased oxygen saturation in the 

tissue. This peak correlates with the spectral changes seen with decreased oxygen 

saturation in the Monte Carlo model (section 3.4.1).  The RMS differences between 

the average spectra of the normal and the TNF dARE groups have been included in 

the appendices (section 8.A6).  

Similar to the PCA scoring results of reflectance, the 1st PC score could be seen to 

vary between the paws on the same mouse, between different regions of the paw, and 

within the group of normal mice.  
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Figure 45: Min-max normalised transmittance spectral data from four areas of the TNF dARE mouse hind paws 
from six 12-week old mice, N=3 TNF dARE and N=3 normal, with two paws imaged per mouse giving a total of 
eleven datapoints (M1L removed because spectral imaging failed due to paw movement during exposures). Mean 
spectra for the normal group are displayed In blue with standard deviation shown as a pale blue shaded region and 
in red for the TNF dARE data. a) Min-max normalised data for the heel region of the paw. b) Min-max normalised 
spectral data for the midfoot region of the paw. c) Min-max normalised data for the joints region of the paw. d) Min-
max normalised data for the toes region of the paw.  

 

Figure 46: Results from principal component analysis of transmittance spectral data from four areas of the TNF 
dARE mouse hind paws from six 12-week old mice, N=3 TNF dARE and N=3 normal, with two paws imaged per 
mouse giving a total of eleven datapoints (M1L removed - spectral imaging failed due to paw movement). a) Score 
along the 1st principal component for the normalised transmittance data for each area of the foot. Spectra from 
each mouse paw are labeled m1 to m6 with right and left hind paws indicated by R and L. b) Normalised 
transmittance spectra for each hind paw from the group of six mice for four anatomical regions. The spectra have 
been superimposed on a statistical shape model of the variation contained by the 1st principal component.  
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When performed on the raw (non-normalised) transmittance spectral data, the 1st PC 

spectral variation corresponded to a relatively linear decrease in spectral intensity and 

the 2nd to a decrease of transmittance in the visible wavelengths. Variation due to 

arthritis appeared to be contained within the first two PC’s making the scoring system 

inconsistent. Applying PCA to normalised data effectively removed the linear spectral 

decrease from the data and focussed on changes in spectral shape. Whilst a linear 

drop in spectral intensity also occurred in the reflectance data and could be attributed 

to the arthritic group, intensity in the transmittance data is more sensitive to the 

thickness of the tissue which is unlikely to be a symptom of arthritis in the TNF dARE 

model where swelling does not occur, but more likely due to the angle of the foot whilst 

imaged or the size of the mouse. Notably however, it does appear to be predicative of 

arthritis in the toes in line with the observation that TNF dARE mice tend to have 

thickening of the toes.  

In calculating the significance of the difference between the groups using 2-factor 

student t-test, only the heel had a significant separation between the group of spectra 

from the normal mice and the group of TNF dARE spectra (p-values: heel = 0.0194, 

midfoot = 0.286, joints = 0.852, toes = 0.387).  

6.4.1.1.3 Correlation of Reflectance and Transmittance PCA Scores 

The reflectance and transmittance PCA scores were compared in Figure 47 by 

Pearson correlation for individual paws (Figure 47a), as well as individual paw regions 

(Figure 47b). The reflectance and transmittance spectra may not be expected to 

correlate exactly due to the different paths the photons take through the heterogenous 

tissue. However, given that the imaged tissue was thin and both reflectance and 

transmittance tissues would be affected by chromophore concentration changes in 
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similar local tissue regions, a correlation could be apparent. The graphs in Figure 47 

have been annotated with the p-values calculated by Pearson correlation.  

 
 

Figure 47: Comparison of the 1st principal component scores from principal component analysis of reflectance and 
transmittance spectral data from four areas of the TNF dARE mouse hind paws from six 12-week old mice, N=3 
TNF dARE and N=3 normal, with two paws imaged per mouse giving a total of eleven datapoints (M1L removed 
because transmittance imaging failed due to paw movement during exposures). P-values and r-values calculated 
by Pearson correlation analysis. a) Comparison of the 1st prinicipal component scores for reflectance, averaged for 
each hind paw, to the 1st principal component scores for min-max normalised transmittance. b) Comparison of the 
1st prinicpal component scores for reflectance against the 1st principal component scores for transmittance for each 
individual area of the hind paw.  
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Significant correlations could be seen (p < 0.05) for the individual paw scores and for 

all the individual areas of the paws (except the toes), suggesting that the scores of the 

reflectance and transmittance spectra were influenced by the same local tissue 

physiological changes discussed above.  

6.4.1.1.4 Correlation of Spectral Variation with Other Indicators of Disease 

Multispectral imaging of the TNF dARE mouse model identified and characterised 

changes in the spectral response of the tissue between a group of normal and TNF 

dARE mice. This section aims to establish whether the spectral changes detected by 

the multispectral imaging system correlate with other signs of disease severity, to 

determine whether spectral imaging has potential as a method of disease assessment.   

To investigate whether the spectral variation correlated with several established 

methods of measuring disease progress, three measurements were taken of the TNF 

dARE mice. MicroCT data for all mouse hind paws were scored for bone erosion ratio 

using MArthA software, histology sections of the feet were prepared and scored for 

signs of arthritis as described in section 6.2.3, and the mice were scored manually for 

signs of arthritis using an accepted clinical scoring method prior to imaging (see score 

sheet in section 2.5.1.1). Pearson correlation p-values have been calculated between 

the PCA scores from the spectral data,and the metrics of arthritis symptoms produced 

by these methods.  

MicroCT Bone Erosion  

The bone erosion ratio scores produced by MArthA were compared to the multispectral 

reflectance (Figure 48)  and transmittance (Figure 49) PCA scoring at both the level of 
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each area of the paw and for the average scores of each individual paw, using the 

method discussed in section 6.2.4.  

 

 
 

Figure 48: Comparison of the 1st principal component scores from reflectance spectral data vs the bone erosion 
scores from microCT from four areas of the TNF dARE mouse hind paws from six 12-week old mice, N=3 x TNF 
dARE and N=3 x normal, with two paws imaged per mouse giving a total of eleven datapoints (M4L removed 
because failed registration in MArthA software). P-values and r-values calculated by Pearson correlation analysis. 
a) Comparison between the 1st PC reflectance scores per foot and the average bone erosion output from MArthA. 
b) Comparison between the 1st PC reflectance scores per area of each hind paw and the average bone erosion 
output of MArthA for the relevant bones of the paw.  
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Figure 49: Comparison of the 1st principal component scores from transmittance spectral data vs the bone erosion 
scores from microCT from four areas of the TNF dARE mouse hind paws from six 12-week old mice, N=3 TNF 
dARE and N=3 normal, with two paws imaged per mouse giving a total of ten datapoints (M4L removed because 
failed registration in MArthA software, M1L removed because transmittance imaging failed due to paw movement 
during exposures). P-values and r-values calculated by Pearson correlation analysis. a) Comparison between the 
1st PC normalised transmittance scores per foot and the average bone erosion output from MArthA. b) Comparison 
between the 1st PC normalised transmittance scores per area of each hind paw and the average bone erosion 
output of MArthA for the relevant bones of the paw. 

 
For both reflectance and transmittance a significant relationship (p-value < 0.05) 

existed in this dataset between the PCA score and the Bone Erosion score determined 
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by MArthA for each individual paw. However, the individual areas of the paws showed 

correlations that are significant in some areas but not others.  

 
For the individual feet, the p-value remained significant for reflectance (0.0283), but 

not for transmittance (0.765) when the TNF dARE group was analysed alone without 

the normal mouse data (although the group number was low (5 hind paw values)). This 

correlation suggests that the severity of arthritis is associated with the degree of 

change in the tissue spectral response. This would be a necessary relationship to fully 

establish if the spectral score were to be used as a tool for grading arthritis severity.  

 

 

Figure 50: Two example meshes from the microCT analysis using MArthA described in section 6.4.1.1.4. The mesh 
is coloured according to the Euclidean signed error where blue indicates areas of bone erosion and red indicates 
areas of bone deposition. The mesh produced from microCT of the normal mouse displays no distinct regions of 
erosion, whereas areas of erosion can be seen affecting many of the bones of the heel and around the 
metacarpophalangeal joints of the TNF dARE. 

 
Changes in tissue spectral response are unlikely to be a direct result of erosion, but 

the results from this experiment indicate that the more the spectral tissue response is 

perturbed from normal, the more erosion activity is occurring in the hard tissue. Figure 

50 displays a heatmap of bone erosion output from MArthA analysis of two of the mice 
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from this experiment, indicating typical regions of erosion found in the TNF dARE 

model. Blue regions correspond to bone erosion and red to bone growth.  

 
Histology 

Histology scores were taken for one hind paw from each of the 6 mice and have been 

compared to the corresponding PCA scores in Figure 51.   

Significant relationships were seen for both the reflectance and transmittance data with 

the histology scoring results, although unfortunately the sample number for this 

experiment was very small. The histology scores were based on the presence of 

inflammatory infiltrate as well as the extent of joint erosions. The strong correlation 

therefore corroborates the result of microCT analysis indicating increased erosion with 

1st principal component score and suggests a relationship between inflammatory 

infiltrate and spectral tissue response.  

 

 

Figure 51: Comparison of the mean 1st principal component scores from reflectance and transmittance spectral 
data vs the histology scores for the TNF dARE mouse hind paws from six 12-week old mice, N=3 TNF dARE and 
N=3 normal, with histology results taken from one paw per mouse giving a total of 6 values. P-values and r-values 
calculated by Pearson correlation analysis. a) Comparison between the results of Haemotoxylin and Eosin histology 
scoring for six mouse paws and the 1st principal component reflectance scores.  b) Comparison between the results 
of Haemotoxylin and Eosin histology scoring for six mouse paws and the 1st principal component transmittance 
scores.   
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Manual Scoring  

The manual clinical scoring procedure produces one arthritis score per mouse and 

has been compared to the mean principal component score per mouse for 

reflectance and transmittance in Figure 52a and b.   

 
Both the reflectance and transmittance Pearson correlations with the blinded manual 

scoring results gave significant p-values. In this experiment, all TNF dARE mice were 

correctly identified by blinded manual scoring and the mouse with the most extreme 

spectral response in both reflectance and transmittance was given the highest clinical 

score.  

 

 

Figure 52: Comparison of the mean 1st principal component scores from reflectance and transmittance spectral 
data vs the manual scores for the TNF dARE mice from six 12-week old mice, N=3 TNF dARE and N=3 normal, 
with two paws imaged per mouse and averaged giving a total of six values. P-values and r-values calculated by 
Pearson correlation analysis. a) The correlation between the manual scoring method for assessment of arthritic 
mouse models vs the mean 1st PC reflectance results per mouse. b) The correlation between the manual scoring 
method for assessment of arthritic mouse models vs the mean 1st PC normalised transmittance results per mouse. 

 
Discolouration of the hind paws constitutes only a small component of the clinical 

scoring method, which includes scores for deformity of the joints in both the front and 

back limbs, scores for altered appearance, gait, and behaviour. Significant correlation 
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with clinical scores would therefore suggest that the degree of discoloration of the paws 

is relevant to the health of the overall mouse. 

 

6.4.1.2 Longitudinal TNF dARE Imaging  

Data shown in the previous experiment found a change in the optical characteristics of 

TNF dARE mice to be associated with the exhibition of arthritis symptoms and 

pathology. The aim of this experiment was to image TNF dARE mice at an earlier 

timepoint in arthritis progression, to observe whether multispectral imaging could pick 

up differences at an early developmental stage of disease, before it is clinically 

detectable. Also, to follow how the developing arthritis symptoms influence the 

multispectral imaging results within the same subject mice. A group of 6 mice, 3 TNF 

dARE and 3 controls, were scored blindly by the manual scoring procedure once per 

week from the ages of 5 weeks to 9 weeks and imaged for reflectance and 

transmittance at 5 weeks, 7 weeks and 9 weeks. The mice were culled at the end of 

the week 9 imaging session and the hind limbs taken for microCT analysis before the 

genotypes of the mice were revealed. Details of the mice used in this experiment are 

discussed in section 6.2.1.1. 

PCA was employed for the analysis of the multispectral data to score the mice for 

spectral variation. The analysis was applied to the full group of temporal spectra so 

that the PCA score related the spectra from the three imaging timepoints to the same 

eigenvector. Figure 53 displays the 1st principal component reflectance scores for 

each individual paw (Figure 53a) and for each area (Figure 53b) over the 5 week 

timeframe. The PCA scores have been compared to the progression of manual scoring 

results (Figure 54) and the resulting bone erosion data from MArthA (Figure 55). 
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For this experiment, transmittance results have not been included. As with the results 

of the 12 week TNF dARE imaging, there were slight trends towards decreased 

transmittance in the 600nm to 800nm region of the spectrum, but the PCA scores 

showed a lot of overlap of the two groups and hence were unable to effectively grade 

arthritis symptoms.  

6.4.1.2.1 Reflectance  

The PCA scores from the longitudinal reflectance imaging of the TNF dARE mice 

indicate spectral changes apparent in the model as early as 5 weeks of age, across 

every region of the foot. The scores remain relatively consistent for each individual 

mouse paw across the five week imaging period (Figure 53a). If the 1st PC score is 

correlated with arthritis severity as suggested in section 6.4.1.1.4, this would indicate 

that the most symptomatic mice may be detectable from an early age. It also indicates 

that transient fluctuations in physiology are not overriding spectral changes happening 

due to arthritis. This result is encouraging that spectral imaging could be used to 

indicate the presence of arthritis at an earlier age than would be possible with manual 

scoring. 

 
When applying a 2-factor student t-test to the RMS distances between individual 

spectra for all timepoints separately, nearly all tissue regions for each timepoint 

showed significant separation between the spectral groups (p-values given in order 

heel, midfoot, joints, toes: Week5; 0.000369, 6.10e-05, 0.00383, 0.0108 Week7; 

1.21e-06, 5.36e-06, 0.000778, 0.398 Week9; 0.191, 0.0140, 0.0735, 0.000733). 
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Figure 53: Progression of the 1st principal component scores from reflectance spectral data for TNF dARE mice 
hind paws from six 5-week to 9-week old female mice, N=3 TNF dARE and N=3 normal, with two paws imaged per 
mouse giving a total of eleven values (M2L removed due to failiure of spectral imaging). a) Mean reflectance 1st 
PC scores from 5 weeks to 9 weeks of age for each individual paw from a sample of three TNF dARE mice (red) 
and three Normal controls (blue). Mice are indexed accoring to number and left/ right paw on the right of the graph 
b) Mean reflectance 1st PC scores from 5 weeks to 9 weeks of age for each area of each individual paw from a 
sample of 3 TNF dARE mice and 3 normal controls.   
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6.4.1.2.2 Correlation with Other Indicators of Arthritis 

Manual Scoring  

Clinical scoring was performed once weekly over the five weeks in a blinded 

randomised manner. Figure 54a shows the mean 1st principal component reflectance 

score per mouse from the 3 imaging sessions and Figure 54b shows the manual scores 

for the weekly timepoints.  

 

 

Figure 54: Reflectance score, manual score and weight for TNF dARE mice from 5 weeks to 9 weeks. Scores from 
six 5-week to 9-week old female mice, N=3 TNF dARE and N=3 normal, imaging taken for two paws per mouse 
and averaged giving a total of six values. a) Mean reflectance 1st PC scores (across both hind paws) for each 
mouse (M1 – 6) in the longitudinal TNF dARE imaging experiment, imaging timepoints at week 5, week 7 and week 
9. Disease status is indicated by the colour of the label (blue = normal, red = TNF +/dARE). Individual mice are 
indexed by number on the righthand side of the graph. b) Manual score for the same group of mice, scored weekly 
from 5 weeks to 9 weeks of age. Any score above 0 indicates arthritis symptoms detected by scoring method. c) 
Mouse weights taken at weekly timepoints from 5 weeks of age to 9 weeks. 

 
There is noticeably less consistency in the manual scoring than in the scores from the 

1st principal component of reflectance. Given that the TNF dARE is a genetic, chronic, 

and progressive model of arthritis, large fluctuations in the arthritis score are probably 

not representative of the severity of the symptoms. Pearson correlation analysis 

between the 1st PC scores, manual scores, and mouse weights show that only the 

correlation between 1st PC scores and weights is significant (p-values: weight vs PCA 

scores 0.0230, weight vs manual scores 0.4429, PCA scores vs manual scores 

0.7234).  Even with the benefit of additional parameters for assessment, clinical 



 136

scoring assessed two arthritic mice to be normal, one at 5 weeks of age and one at 7 

weeks in the longitudinal imaging experiment.  

 
Bone Erosion  

 

Figure 55: Comparison of the 1st principal component scores from reflectance spectral data vs the bone erosion 
scores from microCT for the TNF dARE mouse hind paws. Reflectance scores and bone erosion from six 5-week 
to 9-week old mice, N=3 TNF dARE and N=3 normal, with imaging and bone erosion scores performed for two 
paws per mouse giving a total of ten values (M2L imaging failed, M6L bone erosion registration failed, <10 values 
for individual areas where individual bones failed to register). P-values and r-values calculated by Pearson 
correlation analysis. a) Comparison of 1st principal component reflectance score (meaned across the measurement 
timepoints) against the mean bone erosion ratio produced by MArthA, for each individual foot. b) The 1st principal 
component reflectance score for each individual area compared against the mean bone erosion ratio for each area.  
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For comparison with the results of bone erosion calculated by MArthA, the 1st principal 

component reflectance scores were averaged over the three imaging sessions to take 

into account disease progression. Figure 55a displays the results for the average score 

per paw versus the bone erosion ratio. Figure 55b shows how the principal component 

and erosion scores compare per region of the foot.  

 
As with the 12 week imaging experiment for the TNF dARE model, a significant 

correlation was found between the bone erosion ratio and the 1st PC reflectance score, 

indicating a relationship between the spectral deviation away from the spectral 

response of the normal mice and the degree of bone erosion in the joints.  

 
 

6.4.1.3 TNF dARE Imaging Discussion  

The imaging experiments of the TNF dARE model have shown a consistent pattern of 

spectral change with the onset of arthritis symptoms in the hind paws. Principal 

component analysis of spectral data from the TNF dARE mouse model of arthritis was 

able to isolate the variation in groups of spectral data and provide a useful metric for 

the spectral variation relative to the group of spectra.  The spectral score for the 1st 

principal component has been found to correlate significantly with several alternative 

indications of arthritis symptom progression, suggesting that the physiological changes 

that influence the spectral response of the tissue are relevant to the pathological 

progression of arthritis. Multispectral imaging also provides a more detailed dataset 

than manual scoring and correlates better with alternative pathological measures such 

as degree of bone erosion and histological evidence of inflammation.  

 
Progression of the spectral scores over time were not obvious from the experiments in 

section 6.4.1.2. However, it was a small sample set so the data were sensitive to 
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outliers and it may be that progression in spectral score would have been detectable 

over a longer timescale.  

 
Both experiments detailed above found that spectral variation was apparent among 

the group of normal mice as well. Although the mice are the same age, sex and from 

the same genetic background, small differences in their physical size and tissue 

composition are expected, potentially resulting in the spectral variation seen. The 

amount of variation between the healthy mice could be interpreted as an indication that 

the variation in the TNF dAREs may not be a direct result of arthritis symptoms, 

however, the scores from the experiments show good correlation with other arthritis 

markers. It is possible that differences present in the tissue of the healthy mice may 

predispose certain mice to worse arthritis symptoms.  

 
Given the spectral changes predicted by the Monte Carlo arthritis model, it is likely that 

decreased oxygen saturation of haemoglobin is resulting in the consistent decrease of 

reflectance and transmittance seen affecting the 600 to 800nm spectral region. The 

relatively consistent decrease in reflectance affecting all wavelengths may be due to 

increased blood concentration, however, other factors which could produce a similar 

effect would be changes in the scattering properties of the tissue or the surface of the 

paw being imaged at an angle.  

 
Of all the arthritis assessment methods used in the experiments, histology scoring is 

the most directly related to soft tissue pathology. Whilst the number of samples was 

low, the experiments were indicative that inflammatory infiltrate and bone erosion 

visible on the slides correlated with the spectral score. An interesting experiment to 

conduct in future would be to investigate whether spectral changes were apparent in 
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the tissue before the onset of joint erosion, when inflammatory infiltrate became 

detectable in the histology, since physiological changes affecting spectral response 

such as hypoxia and increased blood flow are likely to begin with inflammatory cellular 

infiltrate. Other possibilities would be comparing the spectral score to the amount of 

inflammatory infiltrate to see if there was a correlation there.   

 
Bone erosion is an important topic in the study of RA as the gradual destruction of the 

joints contributes to limiting the abilities and quality of life of people with RA. The 

presence of focal bone erosions near the joint can be used as a marker for response 

in therapeutic intervention and the success of biologic drugs is in part due to slowing 

the progression of erosions (197,198). The correlations found between the spectral 

scores and the bone erosion may therefore be a useful measurement in these kinds of 

studies.  

 

6.4.2 K/BxN Serum Transfer Model Imaging  

As described in section 2.4, different murine models of rheumatoid arthritis can have 

different physical manifestation of symptoms. The experiments described in this 

section detail the results of multispectral imaging for the K/BxN serum transfer model 

of arthritis. Details of arthritis induction in the mice used in the experiment are 

discussed in section 6.2.1.2. 

A group of four mice were imaged with one normal control and three symptomatic 

K/BxN serum transfer mice. The mice were scored according to the clinical scoring 

protocol, including calliper measurements of the feet for assessing the degree of 

swelling.  
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6.4.2.1 Reflectance  

Figure 56 displays the normalised mean reflectance spectra together with the standard 

deviation for the normal and the K/BxN serum transfer mice. As with the TNF dARE 

experiments, Figure 57a displays the 1st principal component scores from the raw 

reflectance data, along with a statistical shape model describing the variation in the 

dataset and the superimposed raw spectral data (Figure 57b).  

 
 

 

Figure 56: Min-max normalised reflectance spectral data from four areas of the K/BxN ST mouse hind paw from 
four mice, N=3 K/BxN ST and N=1 normal, with two paws imaged per mouse giving a total of eight spectra. Mean 
spectra for the normal group are displayed In blue with standard deviation shown as a pale blue shaded region and 
in red for the K/BxN ST data. a) Average normal vs average K/BxN ST reflectance spectra for the heel region of 
the hind paw from a group of 4 mice. b)  Average reflectance min-max normalised spectra for normal vs K/BxN ST 
for the middle region of the foot. c) Average reflectance min-max normalised spectra for the joints region of the foot. 
d) Average min-max normalised spectra for the toes region of the foot. 

 
Testing the significance of the RMS distance with 2-factor student t-test between all 

the spectra of the normal and K/BxN serum transfer groups showed that only the toes  
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Figure 57: Results from principal component analysis of reflectance spectral data from four areas of the K/BxN ST 
mouse hind paws from four mice, N=3 K/BxN ST and N=1 normal, with two paws imaged per mouse giving a total 
of eight values. a) Score along the 1st principal component for the reflectance data for each area of the foot. Labels 
indicate mouse number and left/right hind paw. b) Reflectance spectra for each hind paw from the group of four 
mice, separated into 4 anatomical regions. The raw spectra have been superimposed on a Statistical Shape Model 
of the variation contained by the 1st principal component shown as a shaded region c) Normal mouse mapping of 
1st PC score value for individual pixels of the four selected regions of the paw. d) K/BxN ST mice mapping of 1st PC 
score value for individual pixels of the four selected regions of the paw. 

 
area was significant for this experiment (p-value heel: 0.0969, midfoot: 0.228, joints: 

0.629, toes: 0.0014). 

 
In common with the TNF dARE model, there was variation in the spectral shape around 

the 600 to 800nm region which relates to oxygen saturation. However, the effect 
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appeared less predictable, with some of the mice showing greater reflectance in this 

region and some showing less.  

 
Initial review of the PCA scores for the K/BxN serum transfer reflectance data shows 

that the scores for the normal mice vs the K/BxN serum transfer mice do not form 

distinct groups, like those seen in the TNF dARE experiments. However, as noted 

previously, this arthritis model exhibits symptoms less symmetrically than the TNF 

dARE and it is possible that certain paws may remain unaffected by arthritis symptoms. 

Correlation analysis with the calliper scores in section 6.4.2.3 support this theory. As 

with the TNF dARE model, the 1st principal component of reflectance described most 

of the variation in the dataset with an average percentage of 96.8% for the four areas 

of the feet. 

 

6.4.2.2 Transmittance 

Figure 58 shows the mean normalised transmittance data for the normal vs K/BxN 

serum transfer mice with the standard deviation indicated by the coloured region 

around the mean spectra. Figure 59 shows the scores for each spectra resulting from 

performing PCA on the normalised transmittance data.  

 
As with the reflectance data the K/BxN serum transfer paws and the normal controls 

did not form distinct groups, but there was correlation in the scores for reflectance and 

transmittance in all areas except the joints. In general, transmittance was lower in the 

600nm to 800nm region of the spectrum for the K/BxN ST mice, in common with the 

TNF dARE mouse.  
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Figure 58: Min-max normalised transmittance spectral data from four areas of the K/BxN ST mouse hind paws from 
four mice, N=3 K/BxN ST and N=1 normal, with two paws imaged per mouse giving a total of seven values (M1L 
imaging failed due to movement of the mouse during imaging exposure). Mean spectra for the normal group are 
displayed In blue with standard deviation shown as a pale blue shaded region and in red for the K/BxN ST data. a) 
Average normal vs average K/BxN ST transmittance spectra for the heel region of the hind paw from a group of 
four mice. b)  Average transmittance min-max normalised spectra for normal vs K/BxN ST for the middle region of 
the foot. c) Average transmittance min-max normalised spectra for the joints region of the foot. d) Average min-max 
normalised spectra for the toes region of the foot. 

 

Figure 59:  Results from principal component analysis of transmittance spectral data from four areas of the K/BxN 
ST mouse hind paws from four mice, N=3 K/BxN ST and N=1 normal, with two paws imaged per mouse giving a 
total of seven values (M1L removed  due to movement of the mouse during imaging). a) Score along the 1st principal 
component for the normalised transmittance data for each area of the foot. b) Normalised transmittance spectra for 
each hind paw from the group of four mice, separated into four anatomical regions. The raw spectra have been 
superimposed on a statistical shape model of the variation contained by the 1st principal component. 
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Testing the significance of the RMS distance for the normalised transmittance spectra 

of the diseased mice versus the normal mice showed that the midfoot and toes were 

significant (p-value heel = 0.416, midfoot = 0.0470, joints = 0.942, toes = 0.0132). 

 

6.4.2.3 Correlation of Spectral Variation with Other Indicators of Disease 

Calliper Measurements and Manual Scoring  

 
K/BxN serum transfer mice are an inflammatory model of arthritis and exhibit swelling 

of the paws which can be measured by callipers. In Figure 60, the scores for each paw 

resulting from PCA of the reflectance and transmittance spectra have been compared 

to the dorsal to ventral width of the mouse hind paws for the reflectance (Figure 60a) 

and transmittance (Figure 60b) principal component score average per paw.  

 

 

Figure 60: Comparison of the 1st principal component scores from reflectance and transmittance spectral data vs 
the calliper measurements for the K/BxN ST mouse hind paws from four K/BxN ST mice, N=3 K/BxN ST and N=1 
normal, with two paws imaged per mouse giving a total of eight values for reflectance and seven values for 
transmittance (M1L imaging failed due to movement of the mouse during imaging exposure). P-values and r-values 
calculated by Pearson correlation analysis. a) 1st principal component scores for reflectance have been compared 
to the width of the hind paws in mm. b) 1st principal component scores for transmittance have been compared to 
the width of the hind paws in mm. 
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A significant correlation was found between the reflectance principal component score 

and the paw width suggesting that spectral change in the reflectance response of the 

model is concurrent with swelling.  

 
No correlations were found comparing the PCA scores with the manual scores per 

mouse (manual scores M1: 13, M2: 9, M3: 12, M4: 0), but PC scoring and manual 

scoring both rated mouse 2 as least affected, and mouse 3, which was given the 

highest manual score for swelling and discolouration in the hind paws (M1: 4, M2: 3, 

M3: 5, M4: 0), was the most affected according to the 1st principal component 

reflectance scores.  

 
When the significance of the relationship between calliper measurements and 1st 

principal component score is tested after removing the normal controls, it remained 

significant for reflectance at p-value = 0.0169, but not for transmittance (p-value = 

0.558). 

6.4.2.4 K/BxN Serum Transfer Discussion  

Although the K/BxN serum transfer model has a different appearance to that of the 

TNF dARE, the PCA method of analysis was flexible enough to distinguish the spectral 

effects of arthritis when a normal control is included. The spectral results were less 

consistent for the K/BxN ST mice reflecting the less predictable, less symmetric nature 

of the model compared to the TNF dARE. Some similar trends were seen in the 

spectral reflectance and transmittance data, such as a relative decrease in reflectance 

and transmittance in the 600nm to 800nm spectral region, but the RMS difference 

between the mean of the arthritic group and the mean of the normal group was different 

for the TNF dAREs and the K/BxN STs (shown in section 8.A7), where the K/BxN ST 
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model had a relatively larger spectral change in the 800nm to 1000nm wavelengths. 

This could be due to the difference in the phenotype of the arthritis models. For the 

K/BxN ST model, the 4th principal component also appeared to separate the arthritic 

mice from the normal mice suggesting that the spectral change due to arthritis was not 

completely captured within the 1st PC for this model. 

6.4.3 Feature Mapping 

6.4.3.1 LDA Mapping 

Multispectral data inherently provide information about relative concentration of 

chromophores in biological tissue. For the multispectral images taken in section 6.4.1.1 

and section 6.4.2, spatial maps of the chromophore features were constructed. They 

display oxygen saturation, BVF in the deeper tissues, and BVF in the more superficial 

tissue  for the TNF dARE mice in section 6.4.1.1, and for the K/BxN ST mice in section 

6.4.2.  

Axes describing the chromophore concentration were isolated from simulated data 

using linear discriminant analysis (LDA) described in section 6.2.7. A library of Monte 

Carlo tissue spectra (Figure 61) from the mouse paw model (section 3) were classified 

according to particular chromophore changes. The parameter values input into the 

model were used to label each spectra as group one or two depending on the 

concentration of the chosen chromophore (group 1 high, group 2 low and mean). LDA 

was then performed to find axes discriminating the spectral changes. For example, 

spectra where oxygen saturation in the muscle layer of the model was altered were 

classified into two classes of oxygen saturation, regardless of other changes in the 

tissue. LDA of the data then identified the spectral variation corresponding to the 

increasing oxygen saturation in the muscle.  
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To generate the spectra, GPUMCML (199) was run iteratively for every possible 

combination of the parameters shown in Table 3, in total the number of spectral 

simulations was 13122 and the reflectance and transmittance spectra from each run 

were saved. Figure 61 displays the mean spectra and the standard deviation for 

reflectance and transmittance.  Given the additional computational demand of the full 

simulation, a GPU parallelised version of the MCML code was used in combination 

with a Tesla C2070, or GeForce GTS 450 GPU card.  

Table 3: Parameters sampled by the Monte Carlo model 

Dermis 
BVF 

Muscle 
BVF 

Dermis 
Depth/ 
μm 

Muscle 
Depth/ 
μm 

Melanin Conc Dermis 
SO2 

Muscle 
SO2 

Muscle  
Water 
Conc 

Bone Depth/ 
μm 

0.04, 
0.08, 
0.12 

0.04, 
0.08, 
0.12 

90, 100, 
110 

100, 
250, 500 

0.0087, 0.087 0.3, 
0.48, 0.7 

0.35, 
0.49, 
0.84 

0.63, 
0.79, 
0.95 

100, 300, 600 

 

 

Figure 61: Reflectance and transmittance spectra for 13122 iterations of the Monte Carlo hind paw model with 
varying parameters. The blue line shows the mean spectrum and the paler blue shows the standard deviation.  a) 
The mean and standard deviation for the reflectance spectra. b) The mean and standard deviation for the 
transmittance spectra.  
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Figure 62: Feature maps for the TNF dARE mice using linear discriminant analysis of Monte Carlo modelled spectra 
to define axes relating to muscle oxygen saturation, muscle blood volume fraction and dermis blood volume fraction. 
a) and b) Normal control littermates (a) and TNF dARE+/-  (b) mouse hind paws from the experiment described in 
section 6.4.1.1. Individual pixels in the image are scored according to an axis defined by LDA, isolating the spectral 
effects of oxygen saturation in the muscle layer of the Monte Carlo model. c) and d) As above, normal control 
littermates (c) and TNF dARE+/-  (d) mouse hind paws. Individual pixels in the image are scored according to an 
axis defined by LDA, isolating the spectral effects of changing BVF in the muscle layer of the Monte Carlo model. 
e) and f) As above, normal control littermates (e) and TNF dARE+/-  (f) mouse hind paws. Individual pixels in the 
image are scored according to an axis defined by LDA, isolating the spectral effects of changing BVF in the dermis 
layer of the Monte Carlo model. 
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Figure 63: Feature maps for the K/BxN ST mice using linear discriminant analysis of Monte Carlo modelled spectra 
to define axes relating to muscle oxygen saturation, muscle blood volume fraction and dermis blood volume fraction. 
a) and b) Normal (a) and K/BxN serum transfer (b) hind paw images from the experiment described in section 6.4.2. 
Individual pixels in the image are scored according to an axis defined by LDA, isolating the spectral effects of 
oxygen saturation in the muscle layer of the Monte Carlo model. c and d) As above, normal (c) and K/BxN serum 
transfer mice (d). Individual pixels in the image are scored according to an axis defined by LDA, isolating the spectral 
effects of BVF in the muscle layer of the Monte Carlo model. e and f) Normal (e) and K/BxN serum transfer mice 
(f). Individual pixels in the image are scored according to an axis defined by LDA, isolating the spectral effects of 
BVF in the dermis layer of the Monte Carlo model. 
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In Figure 62 and Figure 63, the spectra from individual pixels are scored according to 

the LDA axes and colour mapped. Several features of the mouse hind paws could be 

seen in a general observation of the maps. Areas of higher blood concentration 

appearing in the muscle and dermis BVF maps appeared to show the pattern of larger 

blood vessels in the tissue. The footpads could be seen as areas of lower blood 

concentration but high oxygenation and the heel, where large veins are close to the 

tissue surface, appears to be generally less oxygenated than the central region of the 

foot and the toes. There was also notable variation among the healthy mice, 

particularly for mouse 1 in Figure 62 where blood concentration appeared to be higher, 

most strikingly in the dermis BVF map. It is unclear what the origin of the difference 

was. It may be a result of a temporal change caused by a higher temperature of the 

warming pad or a longer anaesthetic time, or it could be an anomaly in the spectral 

data.  

 
For the TNF dARE mice (Figure 62), lower oxygenation could be seen particularly in 

the heel region of the foot, but extending in to the midfoot, joints and toes regions for 

several of the mice. No clear differences could be seen when isolating the blood 

concentration in the muscle layer, however, the dermis map appears to show lower 

blood concentration in the TNF dARE’s. For the most part, the footpads appear to 

remain well oxygenated and there is still a gradient of oxygenation visible from the heel 

to the toes.  

 
For the K/BxN ST mice (Figure 63), the worst affected paws according to the calliper 

measurements were the right side paws for all of the mice. The hypoxia map data 

appear to reflect these scores with larger regions of lower oxygen saturation visible in 
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the heels and midfoot. The effect of arthritis on blood concentration is not completely 

clear. Even though the K/BxN ST mouse is of a more ‘inflammatory’ phenotype, the 

presence of blood vessels makes it difficult to judge whether there is an increase in 

blood concentration locally in the arthritic tissue. There may be a suggestion of 

increased BVF in the muscle BVF map of a mouse visually affected by swelling of the 

heel area such as the right paw Mouse 2, but more research would be needed to 

establish a relationship.  

 
Overall, according to this method, the effects of arthritis on chromophore 

concentrations of haemoglobins do not appear to be highly localised to joint regions 

and the most notable effect for both arthritis models is decreasing haemoglobin 

oxygenation. These maps are based on a spectral changes calculated from Monte 

Carlo models and unfortunately cannot be evaluated against a ground truth. They 

should however provide some indication of relative chromophore change where unique 

spectral effects due to chromophore changes can be determined.  

6.4.3.2 Spectral Angle Mapping  

An alternative method for mapping the spectral data from the mouse paw figures is 

presented below in Figure 64.  Images of the TNF dARE paws from section 6.4.1.1 

have been colour mapped according to the angle between tangential lines of the 

spectra at 670nm and 585nm. Monte Carlo modelling of the mouse hind paw shows 

this angle increases with decreasing oxygen saturation (Figure 17, Figure 19, Figure 

20c). This method of mapping the spectra is independent of the Monte Carlo model, 

obtaining the angle measurements directly for the spectra associated with individual 

pixels. 
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Figure 64: Spectral angle maps produced from calculating the angle of intersecting tangents to the spectra at 670nm 
and 585nm for TNF dARE mice. a) Maps of the normal mouse hind paws produced from calculating the angle of 
intersecting tangents to the spectra at 670nm and 585nm. Increases in this angle were found to be related to 
decreasing oxygenation in the Monte Caro model. b) Maps of TNF dARE mouse hind paws produced from 
calculating the angle of intersecting tangents to the spectra at 670nm and 585nm. 

 
It is interesting to note that angle maps shown in Figure 64 show changes consistent 

with the changes predicted by LDA mapping where the TNF dARE mouse present a 

larger spectral angle indicative of lower oxygenation than in the normal mice. They are 

also consistent with the 1st PC score mapping in Figure 44 showing that some paws 

are more spectrally heterogeneous and some show more constant spectral values. 

Suggestions of anatomical features such as the veins in the heel can be seen for some 

of the mice. 

6.5 Discussion  

6.5.1 Discussion of Results 

The results of this chapter indicate that adopting multispectral imaging into the 

assessment of RA models could have potential benefits. A method of accurately 

gauging the severity of mouse symptoms in vivo could be a useful addition to 

experiments such as therapeutic intervention studies, for which progression of arthritis 

symptoms could be traced more accurately over the timeframe of the experiment. The 
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results also indicate that arthritis symptoms could potentially be picked up earlier than 

by manual scoring which would be useful for research following the early development 

of arthritis symptoms. There is also the matter of mouse welfare in RA experiments. 

Mice are generally given analgesia when they exhibit signs of pain, for example limping 

or reduction in voluntary movement, however, it is known that mice disguise pain 

(200,201), for which an accurate measure of arthritis progression could guide the 

introduction of analgesics.  Also, many studies assume that a group of arthritic mice 

are equally affected by disease, or use large numbers to get significant results, so 

better grading of the severity of arthritis could lead to more rigorous experimental 

analysis and potentially reduce mouse numbers needed for a significant outcome.   

 
This work would benefit from future experiments to further investigate the capacity of 

spectral imaging for assessment of mouse arthritis. It would be interesting to image 

more mouse models of RA, particularly for the recovery models where it would be 

useful to see if the spectral effects resulting from arthritis abate with the reduction in 

inflammation. If the technique proved valuable in the hind paws, it could be extended 

to include the front paws as well.  

 
Principal component analysis was a good method of capturing the spectral change 

resulting from arthritis and reducing the dimensions of the data to a single dimension 

giving a useful indication of spectral variation. However, applying PCA to small 

experiments such as those in this chapter will only give a score relative to the other 

spectra along the axis of the first eigenvector for the dataset. In future, if a large dataset 

were to be collected from different mouse models, it may be possible to define a global 

coordinate system to grade severity of arthritis symptoms from spectra in a way that 
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would allow comparison between experiments, and possibly between different arthritis 

models. This work has focused on scoring the mice rather than classifying them 

because genotyping already exists for identifying arthritic mice in the genetic models 

and induced models can be marked by ear tagging to be made identifiable.  

6.5.2 Limitations 

 
The correlation analysis with other indicators of arthritis assumes a linear relationship 

with spectral perturbation which may not be the case. If more data were gathered, the 

nature of these relationships could be fully investigated.  

 
One of the main difficulties with imaging the mouse hind paw with the multispectral 

imaging system described in chapter 4.3 is the difficulty in getting the mouse hind paw 

to lie reliably flat. The knee joint obstructed the limb from being extended backwards 

sole-upwards on a flat surface, particularly for the arthritic mice whose joints may 

already be less flexible. In some cases this resulted in the foot being tilted whilst 

imaged. This particularly affected the transmittance data, where the light path through 

the tissue could become much longer if the paw was tilted, resulting in more variation 

in the measurement. Normalising the transmittance data appeared able to correct for 

this to some extent, but reflectance data consistently produced better correlation with 

other indicators of arthritis and transmittance data were unable to separate the normal 

mice from the TNF dARE mice in section 6.4.1.2.  

6.5.3 Conclusion 

 
As discussed in section 2.5.1.2, multispectral imaging is a novel method of analyzing 

arthritis symptoms in mice. PCA is often used in multispectral imaging for unmixing 
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spectral signatures in the imaging of heterogenous materials (202–205). Likewise LDA 

dimensionality reduction has been used in classifying multispectral image data (206–

208). However, the particular application of these methods to the data can vary. In 

general, they are applied directly to image data. In this research, PCA was applied to 

selected groups of spectral data where the variation due to heterogenous tissue 

changes was removed as a factor and therefore the spectral features introduced by 

arthritis symptoms were isolated in the 1st principal component as the primary cause 

of variation. The LDA model was applied directly to image data but only after training 

on MCML model spectra making it a supervised method of isolating chromophore 

concentration-induced spectral changes. The advantage of multispectral imaging data 

is the ability to apply multivariate analysis methods and explore more of the tissue 

parameters as in section 6.4.3. In comparison to other papers, as discussed in section 

7.2, this work also showed success across multiple mouse models. 

 
The following chapter concludes the outcomes of this research project and discusses 

future possibilities for research in the field of multispectral imaging for mouse models 

of rheumatoid arthritis.  
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7 Conclusions and Future Work   

7.1 Summary of Findings 

In vivo assessment of mouse models of rheumatoid arthritis is an area for which the 

capability of several existing imaging tools has been evaluated in literature, but the 

practicality and accuracy of such techniques is debatable. It is also clear that there are 

issues associated with relying on manual scoring methods such as the one described 

in section 2.5.1.1 due to bias and inaccuracy. However, given the notion of 

discoloration included as a part of the scoring criteria, spectral measurements were 

proposed as a method of capturing the natural change in the tissue with the 

development and progression of arthritis symptoms. The aim of this thesis was 

therefore to investigate the ability of multispectral imaging methods to detect native 

changes in the tissue driven by joint inflammation. To this end, several novel 

experiments were carried out to evaluate the potential for multispectral imaging as an 

arthritis assessment method.  

 
Prior to imaging experiments with live mouse models, Monte Carlo simulations of the 

mouse hind paw were used to investigate the effect of changing concentrations of 

biological chromophores in the tissue in line with predictions informed by current 

literature. Changing blood volume fraction, blood oxygen saturation, and water 

percentage were found to contribute individually to reflectance and transmittance 

spectral changes in an ‘arthritic’ model. The spectral response of the simulated tissue 

also varied depending on the depth of the tissue layer where the changing 

chromophore concentration was modelled. These in silico experiments suggested 

spectral changes could be detectable in live mouse models.  
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Following on from these simulated experiments, reflectance and transmittance 

spectroscopy of the hind paw successfully detected significant differences between 

normal mice and TNF dARE arthritic mice. Promising results were also obtained for 

CIA mice. Whilst spectroscopy was not found to be the most reproducible or easily 

implemented method for obtaining spectral data from mouse hind paws, these 

experiments confirmed that differences in the tissue reflectance and transmittance 

were detectable in vivo.  

To gain information about tissue location and investigate whether arthritis symptoms 

could be further localised to areas of tissue using spectral imaging, this project 

developed a non-contact multispectral imaging system specifically designed to 

investigate the reflectance and transmittance spectra of mouse hind paws (Chapter 5). 

A system of sequential illumination with successive wavelengths of light was designed 

where the illumination could be manually directed to the surface of the underside of 

the paw in reflectance mode or redirected to illuminate the paw from below without 

having to move the mouse. A novel method using polarisers was employed to ensure 

the quality of the transmittance image data.  

Multispectral imaging of mouse hind paws detected reflectance and transmittance 

changes concurring with arthritis symptoms, with some degree of anatomical 

localisation. Analysing the spectra separately for four regions of the paws using 

Principal Component Analysis, the first principal component was found to isolate the 

spectral effects of arthritis symptoms. The scores pertaining to individual spectra could 

then be used to evaluate the individual mice relative to others in the experiment. The 

first principal component scores for the TNF dARE arthritis model were found to 

correlate significantly with bone erosion ratio results from microCT, blinded histology 
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scoring, and the blinded manual scoring method. These results suggest that the 

degree of spectral change detected in multispectral data is related to the progression 

of arthritis.  

The reflectance and transmittance spectra were found to vary across the paw due to 

the underlying anatomical structure. They differ between healthy mice and were 

perturbed by symptoms of arthritis. The nature of these changes is likely to involve 

multiple optical parameters, but trends in the spectral data suggest that decreased 

oxygen saturation is likely to be responsible for spectral changes in arthritic mice. It is 

also possible that increased blood volume fraction contributed to the more or less 

uniform decrease in reflectance, but separating this effect from scattering changes, or 

the difference resulting from imaging the uneven surface morphology, is complex and 

was beyond the scope of this thesis. Changes explicitly resulting from increased water 

percentage were also difficult to detect due to the low absorption in the wavelengths 

imaged and the decreased signal to noise ratio of measurements in the relevant 

spectral regions.  

 
Multispectral imaging detected changes in spectral responses of the mouse hind paw 

at an early stage in arthritis development for the TNF dARE model, before clinical signs 

were manifest. Imaging results for the K/BxN serum transfer model of arthritis were 

analysed by the same PCA-based method and found to correlate with calliper 

measurements of the paw. This demonstrates that spectral changes occur in tandem 

with inflammatory events in the tissue. Overall, this research supports the use of 

multispectral imaging for the assessment of arthritis progression and severity in murine 

RA models.   
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7.2 Comparison with Literature   

The requirement for a reliable method of tracking mouse arthritis symptoms is 

recognized (67,209), as it has potential to refine and reduce the number of mice used 

in experiments by overcoming issues introduced by inter-animal variation. As reviewed 

in section 2.5.1.2, different imaging techniques have been applied specifically to the in 

vivo assessment of murine models of RA including fluorescence imaging (92,210), 

infrared thermography (96), PET imaging (76,77), microMRI (80), and optical 

techniques (94). In some cases the authors propose these methods specifically for 

longitudinal assessment of arthritis symptoms in experiments (92,94,211). Other 

methods for assessment have included software for monitoring gait (212) and 

behaviour (213). 

 
Whilst multispectral imaging of mouse arthritis models cannot be used to probe 

molecular mechanisms like fluorescence molecular tomography or PET, it has 

potential advantages in the context of monitoring murine arthritis. Primarily, 

multispectral imaging does not require the expensive equipment and imaging times 

necessitated in fluorescence imaging and PET. Although the system described in this 

thesis requires anesthetics and a seven-minute imaging time, Section 7.4.1 outlines 

potential methods for streamlining the system design so that the imaging time could 

be reduced and aesthesis might not be required.  

 
Due to the ill-posed nature of the fluorescence inversion problem, fluorescence 

molecular tomography (FMT) is known to have errors associated with estimation of 

fluorophore concentration, requiring a priori structural data from integrated multimodal 

imaging systems to improve the estimation (214–216). Error in quantitation may 
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ultimately result in inaccurate grading of arthritis symptoms. For multispectral imaging, 

no injections of molecular markers are required, minimizing pain and distress for the 

animals in the imaging protocol. And, in contrast to PET/SPECT/CT imaging methods, 

no harmful radiation is used. Another potential value of the multispectral imaging 

method is that it could benefit research focusing on the role of hypoxia or angiogenesis 

in rheumatoid arthritis and hence assist understanding of these mechanisms in the 

pathology of arthritis.  

7.3 Wider Implications of Results 

Several of the outcomes of this research are relevant to the field of arthritis research, 

particularly for in vivo imaging. For the multiplexed imaging of fluorophores in vivo, 

multiple filters are being incorporated into some imaging devices to extend into 

multispectral imaging detection (217–219). The multiple wavelengths assist in spectral 

unmixing of fluorophore signals and removal of tissue autofluoresence. If multispectral 

reflectance/transmittance data could be taken with the same device, then the natural 

perturbation of chromophores in the tissue may be found to correlate with molecular 

changes in arthritis.  

 
This project found that changing tissue properties in the hind paws of the mouse 

significantly altered the reflectance and transmittance response of the tissue, indicating 

greater absorbance in the tissue in a wavelength-dependent manner. Given that 

quantitative FMT assumes similar tissue properties between subject mice, the outcome 

of this research is relevant to the results of fluorescence imaging studies, since the 

percentage of light reaching the fluorophore, and the percentage of Stokes-shifted light 

detected, is dependent on absorption by the tissue.  
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7.4 Future Work  

7.4.1 Further Development of the Imaging System  

In order to facilitate widespread adoption of the system, the multispectral imaging 

system could be redesigned to reduce the imaging acquisition time and cost.  

Acquisition time could be decreased through several techniques (section 7.4.2) and a 

system could theoretically be set up which did not require anaesthetizing the animals. 

This would reduce distress and handling time and make more imaging timepoints 

possible over the timeframe of an experiment. Figure 65a shows a restraining device 

commonly used for administering tail injections. If a device like this were placed 

above an adapted multispectral imaging system, reflectance data could be taken for 

all 4 of the mouse paws simultaneously, as demonstrated in the schematic diagram 

in Figure 65b.  

 
If a system could be designed which did not stress the animal, then the number of 

times the mouse could be assessed would essentially be limitless, which is not the 

case with most alternative imaging methods due to ethical reasons.  

 

Figure 65: Potential set-up for a multispectral system which would not require anaesthetic. a) A picture of the type 
of device commonly used to restrain mice for administering tail injections. The source of the image is given in 
reference (220) b) A theoretical set up for a multispectral imaging system which could allow imaging of the arthritis 
models paws without the need for anaesthetics.  
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7.4.2 Potential Methods for Reducing Image Acquisition Time  

7.4.2.1 Reflectance vs Transmittance Imaging  

The outcome of modelling the mouse hind paw and the results of imaging both 

indicated that reflectance multispectral imaging produces more distinctive results than 

transmittance. Both showed larger RMS differences between the normal and arthritic 

groups, and reflectance PCA scores generally correlated better with alternative 

measures of arthritis. Although transmitted light is likely to have traversed more tissue 

layers, information from the visible region of the spectrum is mostly lost due to very 

low transmission, reducing the usable spectral data. The model also predicts lower 

absolute change in the transmittance percentage between the normal and arthritic 

mice, suggesting that the average percentage of the photon pathlength spent in the 

tissues affected by arthritis is less in transmittance. Therefore, for imaging mice, 

reflectance multispectral imaging alone is sufficient for arthritis assessment. However, 

if the imaging system were extended to larger animals or imaging of humans, it may 

be the case that in thicker tissue the transmittance spectra would be more sensitive to 

arthritis symptoms. The penetration of the reflectance may be insufficient to sample 

the affected tissue region and the increased transmission pathlength may increase 

sensitivity to optical contrast.  

7.4.2.2 Wavelength Optimization  

Although the number of wavelengths used in this project were informative, it is likely 

that there is some redundancy in the data. If the number of imaging wavelengths were 

reduced, the imaging time would naturally decrease making the technique a more 

feasible method for arthritis assessment. For continuous-wave DOT, optimal sets of a 
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chosen number of wavelengths are selected through minimizing the residual norm of 

the least squares reconstruction and the condition number of the extinction coefficient 

matrix (221–223). For calculating the best wavelengths in multispectral imaging, 

criteria such as the 1st principal component score and condition number of the 

absorption coefficients could be used in an optimization to preserve the accuracy of 

arthritis assessment but with a reduced number of imaging wavelengths.  

7.4.2.3 Spectral Estimation  

Another potential option for the future of this work is to simplify the data gathering 

process to the use of cheap, easily available equipment, such as RGB cameras, and 

use more sophisticated post-processing algorithms to estimate the spectral data. Using 

a priori spectral data such as RGB photos of colorchecker charts with known 

reflectance spectra, the underdetermined problem of RGB to multispectral estimation 

becomes a regression problem solvable through methods such as neural networks 

and kernel regression (224,225).  

7.4.2.4 Illumination  

Another option for reducing the acquisition time would be to change the method of 

illumination to a fixed alternative such as narrow bandwidth LED’s, or lasers. Using 

dedicated fixed wavelength illumination, imaging time could be reduced through 

comparatively stronger illumination at the low emission regions of a tungsten halogen 

light source. A cheaper filter-based alternative to the tuneable filters used in this project 

would be interference filters with a computerized filter wheel.   

7.4.3 Model Development  

Using the semi-infinite tissue layer model, the initial aim for a direct inversion (104) 

mapping the remitted spectra to tissue parameters was not achieved. The mouse paw 
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is a problematic surface for spectral imaging owing to being nonuniform and the semi-

infinite layer model potentially oversimplified the problem. 3D implementations of 

Monte Carlo models have been designed to allow for more complex morphologies 

(226–228), and microMRI/ contrast-assisted microCT/ histology (229–231) could 

inform a 3D tissue-segmented model of the mouse hind paw. This would not 

guarantee invertibility since combinations of the parameters could potentially result in 

non-unique changes to the spectra but may offer improvements upon the layer model. 

7.5 Multispectral Imaging for Rheumatoid Arthritis in Humans?  

As discussed in section2.3.5, several optical imaging approaches have been 

attempted for the imaging of healthy joints and rheumatoid joints in patients, often 

specifically aiming to detect physiological changes in early arthritis. Several systems 

attempt tomographic reconstruction of tissue optical parameters. They are able to 

show differences occurring with arthritis onset in the patterns of optical parameters in 

the tissue and reconstruct distribution maps of estimated chromophore concentrations 

(45,46,52,53,232–234). Other systems, one of which is commercially available, use 

varying methods of analysis of the data from NIR spectroscopic methods, often with 

the use of pressure cuffs to temporally alter tissue contrast (40,41,235,236). In general, 

these systems are able to detect differences between healthy and arthritic joints and 

in some cases they exhibit sensitivity and specificity equivalent to other clinical imaging 

methods such as MRI and ultrasound, according to optimized classification algorithms 

with selected image features (53). In order for these systems to be adopted clinically, 

their cost-effectiveness and ability to detect and accurately grade subclinical synovitis 

must be proved.  
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Modelling of multispectral imaging for rheumatoid joints showed potential for 

multispectral imaging to detect changes in the joint in reflectance and transillumination 

set-ups (17). Later, hyperspectral reflectance imaging of RA patients detected 

differences between a group of healthy individuals and a group of patients using 

reconstructed estimates of tissue properties (237). To date, to the author’s knowledge, 

no work has been published on widefield hyperspectral/ multispectral transillumination 

of the arthritic joint. Tomographic reconstruction of tissue properties from such images 

would be inappropriate given the number of potential sources, but analysis of the 

spectroscopic data or topographic tissue property reconstruction may be able to detect 

differences in the arthritic joint (preliminary human spectral data shown in section8.A8).  

7.6 Final Conclusion 

Overall, the results of this project showed that physiological changes occurring in the 

arthritic mouse paw are detectable in the reflectance and transmittance response of 

the tissue in the range 480nm to 1000nm. This could form the basis for a method of 

arthritis assessment which could be a more accurate and less biased method of 

grading the progression of arthritis symptoms. The benefits of such a system could be 

improved animal welfare and improved experimental design and data analysis.  
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8 Appendices  

A1 Implementation of MCML modelling  

The input values for the mouse hind paw MCML model were set up for individual 

wavelengths via a Matlab script. The values were written into a mci file, a text file 

containing the input values for MCML in a format that can be read by the program. The 

data produced by MCML can then be read back into Matlab for analysis.  

A2 MCML additional outputs 

The MCML algorithm outputs several values for each wavelength model. For all 

wavelengths, the MCML program records angular distribution of photon remission in 

reflectance/transmittance, the absorption map showing where photons deposit energy 

in the tissue, and radial distribution of photon remission/transmission. Figure 66 

displays the angular and radial distribution of reflectance and transmittance and 4 

example wavelengths of the absorption maps.   

The angular distribution of both the reflectance and transmittance spectra, shown in 

Figure 66a and Figure 66b, can be seen to follow a Lambertian distribution where 

intensity is proportional to the angle from the surface normal. The graphs for radial 

distribution show decreasing reflectance and transmittance with distance from the 

radial origin of photon injection and faster attenuation of the shorter wavelengths in line 

with higher scattering properties and increased absorption. The absorbance maps, 

shown in Figure 66e, reveal the structure of the layer model and show the distribution 

of the deposition of photon weights at different wavelengths. The model also indicates 

that approximately 2% of the reflectance spectra is due to specular reflection from the 

tissue surface. This result is relatively wavelength independent.  
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Figure 66: Results of Monte Carlo MCML simulations of light propagation in the model of normal mouse tissue 
described in section 3.4.1. a) The angular emission of photons in measured in the reflectance spectra, wavelength 
is indicated by colour. b) The angular distribution of the transmittance spectra, wavelength is indicated by colour. c) 
The radial distribution in distance from the origin of photon injection of photon remission in reflectance, wavelength 
is indicated by colour. d) The radial distribution in distance from the origin of photon injection in the radial axis of 
transmittance, wavelength is indicated by colour. e) Absorbance maps of the layer model showing absorption 
distribution within the modelled tissue for different wavelengths. 

 

A3 MCML Model for Alternative Regions of the Paw 

Figure 19 includes a Monte Carlo simulation of the ‘midfoot’ region of the paw 

according to measurements made of H&E stained paw slides. Figure 67 displays the 
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results for MCML spectra from hind paw models made using the measurements from 

the other three anatomical areas of the paw, the heel, the joints and the toes.  

 

 

Figure 67: Reflectance and transmittance spectra from a Monte Carlo model of the heel, joints, and toes mouse 
hind paw in a ‘normal’ and ‘arthritic’ state. a and b) MCML reflectance and transmittance spectra for a hind paw 
Monte Carlo model simulating the heel region of the foot. Measurements of the tissue layers are described in section 
3.3.1.2, and changes with arthritis are described in section 3.4.1  c and d) MCML reflectance and transmittance 
spectra for a hind paw model simulating the ‘joints’ region of the foot. e and f)  MCML reflectance and transmittance 
spectra for a hind paw model simulating the toes regions of the foot. 
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A4 Tophat Diffuser vs Lambertian Diffuser 

The transillumination system set up described in section 5.3.1.2 calibrates 

transmittance data by division of the sample transmittance image by transmission of 

the diffuser in the stage floor. This method of calibration assumes the light to be an 

equivalent scatterer to the tissue. The diffuser however is a ‘tophat’ diffuser where 

100% of the light exits within a set angle to the normal (25 degrees for the diffuser 

used in the system) and within this range the intensity is equal (Figure 68b). Assuming 

the light transmitted from the tissue is Lambertian, the calibration system is likely to 

underestimate tissue transmittance since a lower percentage of light is transmitted in 

the direction of the camera. Figure 68a shows a Lambertian profile of emission and 

Figure 68b shows the emission of the diffuser, normalized by area.  

 

 

Figure 68: Difference in the detected transmittance of a Lambertian scatterer and a tophat diffuser. a) A profile of 
intensity for Lambertian light emission with angle from the normal to a surface. The profile is normalised so that the 
sum of all intensity’s is equal to 100. b) A profile of intensity for the tophat diffuser. The profile is normalised so that 
the sum of all intensity’s is equal to 100.  

 
Given the distance of the camera from the stage and the size of the lens, the camera 

accepts light emitted within approximately 8 degrees of the surface normal. The ratio 
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of light emitted within 8 degrees of the normal differs by approximately 5 times. The 

transmittance imaging system is therefore underestimating the absolute percentage of 

light transmission by a factor of around 5.  

A5  Change in the Spectral Output of the Light Source Over Time  

The Thorlabs OSL1-EC used in the multispectral system requires time for the lamp to 

warm up and the spectral output to stabilize. Figure 69 shows the difference between 

5 timepoints after the lamp is turned on from 0 minutes to 80 minutes and the spectral 

output measured at 100 minutes.  

 

Figure 69: Difference over 0 minutes to 100 minutes of the Thorlabs OSL1-EC fibre light source. Difference between 
x and 100 minutes is plotted for 5 timepoints across the wavelengths 450nm to 975nm.  

A6     TNF dARE 12 week Imaging RMS Error  

Figure 70 displays the root mean square error between the mean spectra of the normal 

group and the mean spectra of the arthritic group. Data are from the experiment 

detailed in section 6.4.1.1. In both reflectance and transmittance the raw spectra (non-

normalized) were used to calculate RMS.  
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Figure 70: Root mean squared error for the difference between the mean of the raw spectra of the normal mice and 
the TNF dARE mice in reflectance and transmittance.  

 

A7     K/BxN ST RMS Error 

Figure 70 displays the root mean square error between the mean spectra of the normal 

group and the mean spectra of the arthritic group. Data are from the experiment 

detailed in section 6.4.2.1. In both reflectance and transmittance the raw spectra (non-

normalized) were used to calculate RMS.  

 

 

Figure 71: Root mean squared error for the difference between the mean of the raw spectra of the normal mice and 
the K/BxN ST mice in reflectance and transmittance. 

 



 172

A8     Human Imaging  

The system described in chapter 5 was used to image human finger joints. The layout 

of the system is adapted for mice rather than for human fingers, but two examples of 

finger reflectance spectra and of transmission spectra are displayed in Figure 72.   

 

 

Figure 72: Reflectance spectra and transmittance spectra from human finger joints from 2 different subjects. Shaded 
area shows the standard deviation of the 20 spectra collected across the finger joint using the method described in 
section 6.3.2.  

 
The two subjects of imaging show different characteristics in both reflectance and 

transmittance. The transmittance spectra particularly show a large difference due to 

the different size of the fingers imaged. In principle, the system described in chapter 5 

could be adapted for humans and it is possible that features of rheumatoid arthritis 

would be detectable in the spectra.  
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