3 research outputs found

    Generation of plasma cells and CD27 - IgD - B cells during hantavirus infection is associated with distinct pathological findings

    No full text
    International audienceObjective : Human hantavirus infections can cause haemorrhagic fever with renal syndrome (HFRS). The pathogenic mechanisms are not fully understood, nor if they affect the humoral immune system. The objective of this study was to investigate humoral immune responses to hantavirus infection and to correlate them to the typical features of HFRS: thrombocytopenia and transient kidney dysfunction.Methods : We performed a comprehensive characterisation of longitudinal antiviral B-cell responses of 26 hantavirus patients and combined this with paired clinical data. In addition, we measured extracellular adenosine triphosphate (ATP) and its breakdown products in circulation and performed in vitro stimulations to address its effect on B cells.Results : We found that thrombocytopenia was correlated to an elevated frequency of plasmablasts in circulation. In contrast, kidney dysfunction was indicative of an accumulation of CD27−IgD− B cells and CD27−/low plasmablasts. Finally, we provide evidence that high levels of extracellular ATP and matrix metalloproteinase 8 can contribute to shedding of CD27 during human hantavirus infection.Conclusion : Our findings demonstrate that thrombocytopenia and kidney dysfunction associate with distinctly different effects on the humoral immune system. Moreover, hantavirus-infected individuals have significantly elevated levels of extracellular ATP in circulation

    Protocadherin-1 is essential for cell entry by New World hantaviruses

    No full text
    International audienceThe zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS)1,2. No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1)3-6 as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV). In vitro, we show that the surface glycoproteins of ANDV and SNV directly recognize the outermost extracellular repeat domain of PCDH1-a member of the cadherin superfamily7,8-to exploit PCDH1 for entry. In vivo, genetic ablation of PCDH1 renders Syrian golden hamsters highly resistant to a usually lethal ANDV challenge. Targeting PCDH1 could provide strategies to reduce infection and disease caused by New World hantaviruses
    corecore