22 research outputs found

    Comparison of Oral Iron Supplement Formulations for Normalization of Iron Status Following Roux-EN-y Gastric Bypass Surgery: a Randomized Trial

    Get PDF
    Background The evidence behind recommendations for treatment of iron deficiency (ID) following roux-en-y gastric bypass surgery (RYGB) lacks high quality studies. Setting Academic, United States Objective The objective of the study is to compare the effectiveness of oral iron supplementation using non-heme versus heme iron for treatment of iron deficiency in RYGB patients. Methods In a randomized, single-blind study, women post-RYGB and iron deficient received non-heme iron (FeSO4, 195 mg/day) or heme iron (heme-iron-polypeptide, HIP, 31.5 to 94.5 mg/day) for 8 weeks. Measures of iron status, including blood concentrations of ferritin, soluble transferrin receptor (sTfR), and hemoglobin, were assessed. Results At baseline, the mean ± standard deviation for age, BMI, and years since surgery of the sample was 41.5 ± 6.8 years, 34.4 ± 5.9 kg/m2, and 6.9 ± 3.1 years, respectively; and there were no differences between FeSO4 (N = 6) or HIP (N = 8) groups. Compliance was greater than 94%. The study was stopped early due to statistical and clinical differences between groups. Values before and after FeSO4 supplementation, expressed as least square means (95% CI) were hemoglobin, 10.8 (9.8, 11.9) to 13.0 (11.9, 14.0) g/dL; sTfR, 2111 (1556, 2864) to 1270 (934, 1737) μg/L; ferritin, 4.9 (3.4, 7.2) to 15.5 (10.6, 22.6) μg/L; and sTfR:ferritin ratio, 542 (273, 1086) to 103 (51, 204); all p 0.05). Conclusions In accordance with recommendations, oral supplementation using FeSO4, but not HIP, was efficacious for treatment of iron deficiency after RYGB

    Feasibility of Mass-Spectrometry to Lower Cost and Blood Volume Requirements for Assessment of B Vitamins in Patients Undergoing Bariatric Surgery

    No full text
    Bariatric surgery induces deficiencies in a combination of B vitamins. However, high costs and a large blood volume requirement are barriers to routine screening. We adapted and validated a method coupling tandem mass spectrometry (MS/MS) with high-performance liquid chromatography (HPLC) to facilitate cost-effective analysis for simultaneous detection of B vitamins in low volumes of plasma. Based on existing methods, pooled plasma was extracted using hexane and acetonitrile and seven B vitamin analytes were separated using HPLC. Detection was performed with an Agilent 6460 triple quadrupole tandem mass spectrometer (MS/MS) using electrospray ionization in the positive ion mode. We evaluated linearity, recovery, precision, and limit of detection, as well as costs of the assay. We evaluated seven B vitamins from plasma; five (riboflavin, nicotinamide, pantothenic acid, pyridoxine, and biotin) were detected and quantified with precision and linearity. Recovery ranged from 63 to 81% for each of the vitamins, except for nicotinamide—the recovery of which was suppressed to 40%, due to plasma matrix effects. We demonstrated the feasibility of the HPLC–MS/MS method for use in patients who undergo bariatric surgery by analyzing pooled plasma from patients with a lower cost and blood volume than had we sent the samples to a commercial laboratory. It is advantageous and feasible, in terms of low cost and blood volume requirement, to simultaneously measure plasma concentrations of B vitamins using HPLC–MS/MS. With further improvements, the method may enable personalized nutritional assessment for the nutritionally compromised, bariatric surgery population

    Relationship between short-term self-reported dietary magnesium intake and whole blood ionized magnesium (iMg2+) or serum magnesium (s-Mg) concentrations

    No full text
    AbstractObjective Since we and others have shown that supplemental magnesium raises whole blood ionized magnesium (iMg2+) we investigated the relationships between self-reported dietary magnesium intake and concentrations of whole blood iMg2+ and serum magnesium (s-Mg).Methods We obtained whole blood iMg2+ concentrations, as well as s-Mg concentrations, from a pilot, three-arm, randomized, controlled, crossover bioavailability study of magnesium supplements (n = 23; 105 measures). Dietary magnesium intake was assessed using three-day food records and the Nutrition Data System for Research (NDSR, University of Minnesota, MN, USA). Whole blood iMg2+ was measured with an electrode analyser (NOVA Biochemical, Waltham, MA, USA), whereas s-Mg was measured using atomic absorption spectroscopy. A linear mixed-effects model was employed with dietary magnesium as the outcome variable and iMg2+, s-Mg, study treatment and study visit as fixed effects. We adjusted age, gender, race and body mass index covariates.Results Values for dietary magnesium, iMg2+ and s-Mg were 303.8 ± 118.9 mg/day, 1.3 ± 0.1 mg/dL and 2.2 ± 4.1 mg/dL, respectively. No association was found between dietary magnesium intake and iMg2+ −125 ± 176.95 (p = .49) or s-Mg −9.33 ± 5.04 (p = .08).Conclusions Whole blood iMg2+ and s-Mg concentrations do not reflect short-term self-reported dietary intake in adults. Further research is needed to determine whether blood biomarkers of magnesium may reflect dietary magnesium intake.Key messagesDietary intake of magnesium, a shortfall nutrient, may be objectively measured using blood biomarkers of magnesium.Serum magnesium and whole blood iMg2+ were not associated with short-term dietary intake of magnesium

    Questions on 'Intervention effects of a kindergarten-based health promotion programme on obesity related behavioural outcomes and BMI percentiles'

    No full text
    Kobel et al. (2019) report results of a cluster randomized trial examining the effectiveness of the “Join the Healthy Boat” kindergarten intervention on BMI percentile, physical activity, and several exploratory outcomes. The authors pre-registered their study (Steinacker et al., 2016) and described the outcomes and analysis plan in detail previously (Kobel et al., 2017), which are to be commended. However, we noted four issues that some of us recently outlined in a paper on childhood obesity interventions: 1) ignoring clustering in studies that randomize groups of children, 2) changing the outcomes, 3) emphasizing results that were statistically significant from a host of analyses, and 4) using self-reported outcomes that are part of the intervention (Brown et al., 2019)
    corecore