12 research outputs found

    The Gut-Brain Axis in Healthy Females: Lack of Significant Association between Microbial Composition and Diversity with Psychiatric Measures

    Get PDF
    This study examined associations between the composition and diversity of the intestinal microbiota and measures of depression, anxiety, eating disorder psychopathology, stress, and personality in a group of healthy adult females

    The Gut-Brain Axis in Healthy Females: Lack of Significant Association between Microbial Composition and Diversity with Psychiatric Measures.

    No full text
    ObjectiveThis study examined associations between the composition and diversity of the intestinal microbiota and measures of depression, anxiety, eating disorder psychopathology, stress, and personality in a group of healthy adult females.MethodsFemale participants (n = 91) ages 19-50 years with BMI 18.5-25 kg/m2 were recruited from central North Carolina between July 2014 and March 2015. Participants provided a single fecal sample and completed an online psychiatric questionnaire that included five measures: (i) Beck Anxiety Inventory; (ii) Beck Depression Inventory-II; (iii) Eating Disorder Examination-Questionnaire; (iv) Perceived Stress Scale; and (v) Mini International Personality Item Pool. Bacterial composition and diversity were characterized by Illumina sequencing of the 16S rRNA gene, and associations were examined using Kendall's tau-b correlation coefficient, in conjunction with Benjamini and Hochberg's False Discovery Rate procedure.ResultsWe found no significant associations between microbial markers of gut composition and diversity and scores on psychiatric measures of anxiety, depression, eating-related thoughts and behaviors, stress, or personality in a large cohort of healthy adult females.DiscussionThis study was the first specifically to examine associations between the intestinal microbiota and psychiatric measures in healthy females, and based on 16S rRNA taxonomic abundances and diversity measures, our results do not suggest a strong role for the enteric microbe-gut-brain axis in normal variation on responses to psychiatric measures in this population. However, the role of the intestinal microbiota in the pathophysiology of psychiatric illness may be limited to more severe psychopathology

    Gut microbial communities from patients with anorexia nervosa do not influence body weight in recipient germ-free mice

    No full text
    Anorexia nervosa (AN) is a psychiatric disorder that presents with profound weight dysregulation, metabolic disturbances, and an abnormal composition of gut microbial communities. As the intestinal microbiota can influence host metabolism, the impact of enteric microbial communities from patients with AN on host weight and adiposity was investigated. Germ-free (GF) mice were colonized with fecal microbiotas from either patients with AN (n = 4) prior to inpatient treatment (AN T1, n = 50 recipient mice), the same 4 patients following clinical renourishment (AN T2, n = 53 recipient mice), or age- and sex-matched non-AN controls (n = 4 human donors; non-AN, n = 50 recipient mice). Biological and fecal microbiota data were analyzed with linear mixed-effects models. Body weight did not differ significantly between AN recipient mice (T1 and T2) and non-AN recipient mice following 4 weeks of colonization. Enteric microbiotas from recipient mice colonized with AN T1 and AN T2 fecal microbiotas were more similar to each other compared with enteric microbiotas from non-AN recipient mice. Specific bacterial families in the Actinobacteria, Bacteroidetes, and Firmicutes phyla were significantly associated with body weight, fat mass, and cecum weight irrespective of the donor group. These data suggest that body weight, fat mass, and cecum weight of colonized GF mice are associated with human fecal microbes and independent of donor AN status, although additional analyses with larger cohorts are warranted

    Principal coordinate plots of psychiatric measures by quartile.

    No full text
    <p>Principal coordinates were generated using unweighted UniFrac distances from the QIIME pipeline and allocated to quartiles (red: top quartile; orange: middle two quartiles; blue: bottom quartile) based on scores from the (a) Beck Anxiety Inventory; (b) Beck Depression Inventory-II; (c) Eating Disorder Examination-Questionnaire; and (d) Perceived Stress Scale. Plots are based on the first three principal coordinates, which explain 11.5% (PC1), 5.16% (PC2), and 3.98% (PC3) of the variance in microbial composition, and do not cluster by quartile—supporting a lack of association between microbial markers and these psychiatric measures in healthy individuals.</p

    Histograms of p-values for associations with psychiatric measures by taxonomic level.

    No full text
    <p>Associations between psychiatric and microbial measures were examined using Kendall’s tau-b correlation coefficient, in conjunction with Benjamini and Hochberg’s False Discovery Rate procedure, using data generated by the RDP classifier. Psychiatric measures included: Beck Anxiety Inventory, Beck Depression Inventory-II, Eating Disorder Examination-Questionnaire, Perceived Stress Scale, and Mini-International Personality Item Pool. P-value frequencies were examined at each taxonomic level: (a) phylum; (b) class; (c) order; (d) family; and (e) genus.</p

    Image_1_Separate and combined effects of advanced age and obesity on mammary adipose inflammation, immunosuppression and tumor progression in mouse models of triple negative breast cancer.jpeg

    No full text
    IntroductionAdvanced age and obesity are independent risk and progression factors for triple negative breast cancer (TNBC), which presents significant public health concerns for the aging population and its increasing burden of obesity. Due to parallels between advanced age- and obesityrelated biology, particularly adipose inflammation, we hypothesized that advanced age and obesity each accelerate mammary tumor growth through convergent, and likely interactive, mechanisms.MethodsTo test this hypothesis, we orthotopically transplanted murine syngeneic TNBC cells into the mammary glands of young normoweight control (7 months), young diet-induced obese (DIO), aged normoweight control (17 months), and aged DIO female C57BL/6J mice.ResultsHere we report accelerated tumor growth in aged control and young DIO mice, compared with young controls. Transcriptional analyses revealed, with a few exceptions, overlapping patterns of mammary tumor inflammation and tumor immunosuppression in aged control mice and young DIO mice, relative to young controls. Moreover, aged control and young DIO tumors, compared with young controls, had reduced abundance ofcytotoxic CD8 T cells. Finally, DIO in advanced age exacerbated mammary tumor growth, inflammation and tumor immunosuppression.DiscussionThese findings demonstrate commonalities in the mechanisms driving TNBC in aged and obese mice, relative to young normoweight controls. Moreover, we found that advanced age and DIO interact to accelerate mammary tumor progression. Given the US population is getting older and more obese, age- and obesity-related biological differences will need to be considered when developing mechanism-based strategies for preventing or controlling breast cancer.</p
    corecore