19 research outputs found

    Estimating undetected Ebola spillovers.

    Get PDF
    The preparedness of health systems to detect, treat, and prevent onward transmission of Ebola virus disease (EVD) is central to mitigating future outbreaks. Early detection of outbreaks is critical to timely response, but estimating detection rates is difficult because unreported spillover events and outbreaks do not generate data. Using three independent datasets available on the distributions of secondary infections during EVD outbreaks across West Africa, in a single district (Western Area) of Sierra Leone, and in the city of Conakry, Guinea, we simulated realistic outbreak size distributions and compared them to reported outbreak sizes. These three empirical distributions lead to estimates for the proportion of detected spillover events and small outbreaks of 26% (range 8-40%, based on the full outbreak data), 48% (range 39-62%, based on the Sierra Leone data), and 17% (range 11-24%, based on the Guinea data). We conclude that at least half of all spillover events have failed to be reported since EVD was first recognized. We also estimate the probability of detecting outbreaks of different sizes, which is likely less than 10% for single-case spillover events. Comparing models of the observation process also suggests the probability of detecting an outbreak is not simply the cumulative probability of independently detecting any one individual. Rather, we find that any individual's probability of detection is highly dependent upon the size of the cluster of cases. These findings highlight the importance of primary health care and local case management to detect and contain undetected early stage outbreaks at source.EEG is funded by the Gates-Cambridge Trust (Bill & Melinda Gates Foundation [OPP1144]). OR and JLNW are funded by the ALBORADA Trust. JLNW is funded by the Medical Research Council (MR/P025226/1)

    Challenges in evaluating risks and policy options around endemic establishment or elimination of novel pathogens.

    Get PDF
    When a novel pathogen emerges there may be opportunities to eliminate transmission - locally or globally - whilst case numbers are low. However, the effort required to push a disease to elimination may come at a vast cost at a time when uncertainty is high. Models currently inform policy discussions on this question, but there are a number of open challenges, particularly given unknown aspects of the pathogen biology, the effectiveness and feasibility of interventions, and the intersecting political, economic, sociological and behavioural complexities for a novel pathogen. In this overview, we detail how models might identify directions for better leveraging or expanding the scope of data available on the pathogen trajectory, for bounding the theoretical context of emergence relative to prospects for elimination, and for framing the larger economic, behavioural and social context that will influence policy decisions and the pathogen's outcome

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    Estimating undetected Ebola spillovers.

    No full text
    The preparedness of health systems to detect, treat, and prevent onward transmission of Ebola virus disease (EVD) is central to mitigating future outbreaks. Early detection of outbreaks is critical to timely response, but estimating detection rates is difficult because unreported spillover events and outbreaks do not generate data. Using three independent datasets available on the distributions of secondary infections during EVD outbreaks across West Africa, in a single district (Western Area) of Sierra Leone, and in the city of Conakry, Guinea, we simulated realistic outbreak size distributions and compared them to reported outbreak sizes. These three empirical distributions lead to estimates for the proportion of detected spillover events and small outbreaks of 26% (range 8-40%, based on the full outbreak data), 48% (range 39-62%, based on the Sierra Leone data), and 17% (range 11-24%, based on the Guinea data). We conclude that at least half of all spillover events have failed to be reported since EVD was first recognized. We also estimate the probability of detecting outbreaks of different sizes, which is likely less than 10% for single-case spillover events. Comparing models of the observation process also suggests the probability of detecting an outbreak is not simply the cumulative probability of independently detecting any one individual. Rather, we find that any individual's probability of detection is highly dependent upon the size of the cluster of cases. These findings highlight the importance of primary health care and local case management to detect and contain undetected early stage outbreaks at source

    Challenges in modeling the emergence of novel pathogens.

    Get PDF
    The emergence of infectious agents with pandemic potential present scientific challenges from detection to data interpretation to understanding determinants of risk and forecasts. Mathematical models could play an essential role in how we prepare for future emergent pathogens. Here, we describe core directions for expansion of the existing tools and knowledge base, including: using mathematical models to identify critical directions and paths for strengthening data collection to detect and respond to outbreaks of novel pathogens; expanding basic theory to identify infectious agents and contexts that present the greatest risks, over both the short and longer term; by strengthening estimation tools that make the most use of the likely range and uncertainties in existing data; and by ensuring modelling applications are carefully communicated and developed within diverse and equitable collaborations for increased public health benefit

    Assessing the risk of human-to-wildlife pathogen transmission for conservation and public health.

    No full text
    The SARS-CoV-2 pandemic has led to increased concern over transmission of pathogens from humans to animals, and its potential to threaten conservation and public health. To assess this threat, we reviewed published evidence of human-to-wildlife transmission events, with a focus on how such events could threaten animal and human health. We identified 97 verified examples, involving a wide range of pathogens; however, reported hosts were mostly non-human primates or large, long-lived captive animals. Relatively few documented examples resulted in morbidity and mortality, and very few led to maintenance of a human pathogen in a new reservoir or subsequent "secondary spillover" back into humans. We discuss limitations in the literature surrounding these phenomena, including strong evidence of sampling bias towards non-human primates and human-proximate mammals and the possibility of systematic bias against reporting human parasites in wildlife, both of which limit our ability to assess the risk of human-to-wildlife pathogen transmission. We outline how researchers can collect experimental and observational evidence that will expand our capacity for risk assessment for human-to-wildlife pathogen transmission

    Captive Eidolon helvum serology

    No full text
    Sample dates, bat ID numbers, and NiVsG mean fluorescence index (MFI) values from Luminex assays applied to blood samples from captive Eidolon helvum
    corecore