16,143 research outputs found
Assessing the Effectiveness of Saving Incentives
In this paper, we argue that there is more to be learned from recent research on the effectiveness of targeted saving incentives than is suggested by the wide variation in empirical estimates. First, we conclude that characterizations of saving appear to stimulate moderate amounts of new saving. Second, we suggest a cost-benefit approach to ask: What is the incremental gain in capital accumulation per dollar of foregone revenue? We find that for quite conservative measures of the saving impacts of IRAs or 401(k)s, the incremental gains in capital accumulation per dollar of lost revenue are large
Improving Table Compression with Combinatorial Optimization
We study the problem of compressing massive tables within the
partition-training paradigm introduced by Buchsbaum et al. [SODA'00], in which
a table is partitioned by an off-line training procedure into disjoint
intervals of columns, each of which is compressed separately by a standard,
on-line compressor like gzip. We provide a new theory that unifies previous
experimental observations on partitioning and heuristic observations on column
permutation, all of which are used to improve compression rates. Based on the
theory, we devise the first on-line training algorithms for table compression,
which can be applied to individual files, not just continuously operating
sources; and also a new, off-line training algorithm, based on a link to the
asymmetric traveling salesman problem, which improves on prior work by
rearranging columns prior to partitioning. We demonstrate these results
experimentally. On various test files, the on-line algorithms provide 35-55%
improvement over gzip with negligible slowdown; the off-line reordering
provides up to 20% further improvement over partitioning alone. We also show
that a variation of the table compression problem is MAX-SNP hard.Comment: 22 pages, 2 figures, 5 tables, 23 references. Extended abstract
appears in Proc. 13th ACM-SIAM SODA, pp. 213-222, 200
Subsonic flight test evaluation of a propulsion system parameter estimation process for the F100 engine
Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust
- …