11 research outputs found

    Comprehensive Proteomics Analysis of the Hemolymph Composition of Sugar-Fed <i>Aedes aegypti</i> Female and Male Mosquitoes

    No full text
    In arthropods, hemolymph carries immune cells and solubilizes and transports nutrients, hormones, and other molecules that are involved in diverse physiological processes including immunity, metabolism, and reproduction. However, despite such physiological importance, little is known about its composition. We applied mass spectrometry-based label-free quantification approaches to study the proteome of hemolymph perfused from sugar-fed female and male Aedes aegypti mosquitoes. A total of 1403 proteins were identified, out of which 447 of them were predicted to be extracellular. In both sexes, almost half of these extracellular proteins were predicted to be involved in defense/immune response, and their relative abundances (based on their intensity-based absolute quantification, iBAQ) were 37.9 and 33.2%, respectively. Interestingly, among them, 102 serine proteases/serine protease-homologues were identified, with almost half of them containing CLIP regulatory domains. Moreover, proteins belonging to families classically described as chemoreceptors, such as odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), were also highly abundant in the hemolymph of both sexes. Our data provide a comprehensive catalogue of A. aegypti hemolymph basal protein content, revealing numerous unexplored targets for future research on mosquito physiology and disease transmission. It also provides a reference for future studies on the effect of blood meal and infection on hemolymph composition

    Comprehensive Proteomics Analysis of the Hemolymph Composition of Sugar-Fed <i>Aedes aegypti</i> Female and Male Mosquitoes

    No full text
    In arthropods, hemolymph carries immune cells and solubilizes and transports nutrients, hormones, and other molecules that are involved in diverse physiological processes including immunity, metabolism, and reproduction. However, despite such physiological importance, little is known about its composition. We applied mass spectrometry-based label-free quantification approaches to study the proteome of hemolymph perfused from sugar-fed female and male Aedes aegypti mosquitoes. A total of 1403 proteins were identified, out of which 447 of them were predicted to be extracellular. In both sexes, almost half of these extracellular proteins were predicted to be involved in defense/immune response, and their relative abundances (based on their intensity-based absolute quantification, iBAQ) were 37.9 and 33.2%, respectively. Interestingly, among them, 102 serine proteases/serine protease-homologues were identified, with almost half of them containing CLIP regulatory domains. Moreover, proteins belonging to families classically described as chemoreceptors, such as odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), were also highly abundant in the hemolymph of both sexes. Our data provide a comprehensive catalogue of A. aegypti hemolymph basal protein content, revealing numerous unexplored targets for future research on mosquito physiology and disease transmission. It also provides a reference for future studies on the effect of blood meal and infection on hemolymph composition

    Comprehensive Proteomics Analysis of the Hemolymph Composition of Sugar-Fed <i>Aedes aegypti</i> Female and Male Mosquitoes

    No full text
    In arthropods, hemolymph carries immune cells and solubilizes and transports nutrients, hormones, and other molecules that are involved in diverse physiological processes including immunity, metabolism, and reproduction. However, despite such physiological importance, little is known about its composition. We applied mass spectrometry-based label-free quantification approaches to study the proteome of hemolymph perfused from sugar-fed female and male Aedes aegypti mosquitoes. A total of 1403 proteins were identified, out of which 447 of them were predicted to be extracellular. In both sexes, almost half of these extracellular proteins were predicted to be involved in defense/immune response, and their relative abundances (based on their intensity-based absolute quantification, iBAQ) were 37.9 and 33.2%, respectively. Interestingly, among them, 102 serine proteases/serine protease-homologues were identified, with almost half of them containing CLIP regulatory domains. Moreover, proteins belonging to families classically described as chemoreceptors, such as odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), were also highly abundant in the hemolymph of both sexes. Our data provide a comprehensive catalogue of A. aegypti hemolymph basal protein content, revealing numerous unexplored targets for future research on mosquito physiology and disease transmission. It also provides a reference for future studies on the effect of blood meal and infection on hemolymph composition

    Comprehensive Proteomics Analysis of the Hemolymph Composition of Sugar-Fed <i>Aedes aegypti</i> Female and Male Mosquitoes

    No full text
    In arthropods, hemolymph carries immune cells and solubilizes and transports nutrients, hormones, and other molecules that are involved in diverse physiological processes including immunity, metabolism, and reproduction. However, despite such physiological importance, little is known about its composition. We applied mass spectrometry-based label-free quantification approaches to study the proteome of hemolymph perfused from sugar-fed female and male Aedes aegypti mosquitoes. A total of 1403 proteins were identified, out of which 447 of them were predicted to be extracellular. In both sexes, almost half of these extracellular proteins were predicted to be involved in defense/immune response, and their relative abundances (based on their intensity-based absolute quantification, iBAQ) were 37.9 and 33.2%, respectively. Interestingly, among them, 102 serine proteases/serine protease-homologues were identified, with almost half of them containing CLIP regulatory domains. Moreover, proteins belonging to families classically described as chemoreceptors, such as odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), were also highly abundant in the hemolymph of both sexes. Our data provide a comprehensive catalogue of A. aegypti hemolymph basal protein content, revealing numerous unexplored targets for future research on mosquito physiology and disease transmission. It also provides a reference for future studies on the effect of blood meal and infection on hemolymph composition

    Comprehensive Proteomics Analysis of the Hemolymph Composition of Sugar-Fed <i>Aedes aegypti</i> Female and Male Mosquitoes

    No full text
    In arthropods, hemolymph carries immune cells and solubilizes and transports nutrients, hormones, and other molecules that are involved in diverse physiological processes including immunity, metabolism, and reproduction. However, despite such physiological importance, little is known about its composition. We applied mass spectrometry-based label-free quantification approaches to study the proteome of hemolymph perfused from sugar-fed female and male Aedes aegypti mosquitoes. A total of 1403 proteins were identified, out of which 447 of them were predicted to be extracellular. In both sexes, almost half of these extracellular proteins were predicted to be involved in defense/immune response, and their relative abundances (based on their intensity-based absolute quantification, iBAQ) were 37.9 and 33.2%, respectively. Interestingly, among them, 102 serine proteases/serine protease-homologues were identified, with almost half of them containing CLIP regulatory domains. Moreover, proteins belonging to families classically described as chemoreceptors, such as odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), were also highly abundant in the hemolymph of both sexes. Our data provide a comprehensive catalogue of A. aegypti hemolymph basal protein content, revealing numerous unexplored targets for future research on mosquito physiology and disease transmission. It also provides a reference for future studies on the effect of blood meal and infection on hemolymph composition

    Multiple linear regression analysis of the relationships between ADMA and arginine and hemoglobin, HRP2, sVCAM, or lactate.

    No full text
    <p>ADMA, Arg, HRP2, and sVCAM were natural log-transformed. Lactate was square root-transformed. ADMA and arginine were explanatory variables in four separate linear models predicting hemoglobin, HRP2, sVCAM, or Lactate.</p><p>Multiple linear regression analysis of the relationships between ADMA and arginine and hemoglobin, HRP2, sVCAM, or lactate.</p

    DDAH regulates NO synthesis via ADMA metabolism.

    No full text
    <p>Protein arginine methyltransferases (PRMTs) methylate arginine (Arg) residues on proteins to form asymmetric dimethylarginine (ADMA). Proteolysis releases free ADMA that inhibits nitric oxide synthase (NOS). Dimethylarginine dimethylaminohydrolase (DDAH) metabolizes free ADMA to citrulline (Cit) that can be recycled to arginine. Inactivation of DDAH leads to accumulation of ADMA, inhibition of endothelial NO synthesis, and endothelial dysfunction.</p

    Baseline clinical characteristics of the study population.

    No full text
    <p>Values are presented as median [interquartile range]. ADMA: asymmetric dimethylarginine, sVCAM: soluble vascular cell adhesion molecule, PfHRP2: <i>P</i>. <i>falciparum</i> histidine-rich protein 2.</p><p><sup>a</sup> p < 0.001 compared to healthy Gambian children by Mann-Whitney test.</p><p><sup>b</sup> p < 0.001 compared to uncomplicated malaria by Mann-Whitney test.</p><p>Baseline clinical characteristics of the study population.</p

    Correlation of ADMA with biomarkers of anemia, hemolysis, parasite biomass, endothelial activity, and tissue perfusion among children with severe malaria.

    No full text
    <p>ADMA, Arg, ADMA/Arg, HRP2 and sVCAM were natural log-transformed. Hemoglobin was normally distributed and was not transformed. Lactate was square root-transformed. Haptoglobin could not be transformed to a normally distributed variable. All correlations were calculated using Pearson’s method, except for correlations with haptoglobin which were calculated using Spearman’s method. A plot of each correlation is presented in the supplement (<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005119#ppat.1005119.s005" target="_blank">S3 Fig</a>).</p><p>Correlation of ADMA with biomarkers of anemia, hemolysis, parasite biomass, endothelial activity, and tissue perfusion among children with severe malaria.</p

    The ADMA/arginine ratio is acutely elevated in African children with severe malaria.

    No full text
    <p>ADMA and arginine concentrations were measured in plasma samples collected at the time of presentation (Day 0) and at follow-up visits 28 days later (Day 28) in children with WHO-defined uncomplicated malaria or severe malaria. Healthy Gambian children served as a reference group. Wilcoxon test was used for pair-wise comparison of admission and day 28 mesurements within individuals (47 paired observations from patients with severe malaria; 65 paired observations from patients with uncomplicated malaria). Mann-Whitney test was used to compare patients with severe malaria (n = 81) versus uncomplicated malaria (n = 75) and to compare patients with uncomplicated malaria versus healthy children (n = 31). Each horizontal line depicts the group median. **** p < 0.0001; ns p > 0.05.</p
    corecore