7,431 research outputs found

    Macro Dark Matter

    Full text link
    Dark matter is a vital component of the current best model of our universe, Λ\LambdaCDM. There are leading candidates for what the dark matter could be (e.g. weakly-interacting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. Here we consider a general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and cm2^2, respectively -- we therefore dub these macroscopic objects as Macros. Such dark matter candidates could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. A combination of Earth-based, astrophysical, and cosmological observations constrain a portion of the Macro parameter space. A large region of parameter space remains, most notably for nuclear-dense objects with masses in the range 55101755 - 10^{17} g and 2×10204×10242\times10^{20} - 4\times10^{24} g, although the lower mass window is closed for Macros that destabilize ordinary matter.Comment: 13 pages, 1 table, 4 figures. Submitted to MNRAS. v3: corrected small errors and a few points were made more clear, v4: included CMB bounds on dark matter-photon coupling from Wilkinson et al. (2014) and references added. Final revision matches published versio

    The Yersinia enterocolitica Ysa type III secretion system is expressed during infections both in vitro and in vivo.

    Get PDF
    Yersinia enterocolitica biovar 1B maintains two type III secretion systems (T3SS) that are involved in pathogenesis, the plasmid encoded Ysc T3SS and the chromosomally encoded Ysa T3SS. In vitro, the Ysa T3SS has been shown to be expressed only at 26°C in a high-nutrient medium containing an exceptionally high concentration of salt - an artificial condition that provides no clear insight on the nature of signal that Y. enterocolitica responds to in a host. However, previous research has indicated that the Ysa system plays a role in the colonization of gastrointestinal tissues of mice. In this study, a series of Ysa promoter fusions to green fluorescent protein gene (gfp) were created to analyze the expression of this T3SS during infection. Using reporter strains, infections were carried out in vitro using HeLa cells and in vivo using the mouse model of yersiniosis. Expression of green fluorescent protein (GFP) was measured from the promoters of yspP (encoding a secreted effector protein) and orf6 (encoding a structural component of the T3SS apparatus) in vitro and in vivo. During the infection of HeLa cells GFP intensity was measured by fluorescence microscopy, while during murine infections GFP expression in tissues was measured by flow cytometry. These approaches, combined with quantification of yspP mRNA transcripts by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), demonstrate that the Ysa system is expressed in vitro in a contact-dependent manner, and is expressed in vivo during infection of mice

    Latent Process Heterogeneity in Discounting Behavior

    Get PDF
    We show that observed choices in discounting experiments are consistent with roughly one-half of the subjects using exponential discounting and one-half using quasi-hyperbolic discounting. We characterize the latent data generating process using a mixture model which allows different subjects to behave consistently with each model. Our results have substantive implications for the assumptions made about discounting behavior, and also have significant methodological implications for the manner in which we evaluate alternative models when there may be complementary data generating processes.

    Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with S=1/2

    Full text link
    We report on an analytical description of spin-dependent electronic transition rates which are controlled by a radiation induced spin-Rabi oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic states (S=1/2). The oscillation components (the Fourier content) of the net transition rates within spin-pair ensembles are derived for randomly distributed spin resonances with account of a possible correlation between the two distributions that correspond to the two individual pair partners. The results presented here show that when electrically or optically detected Rabi spectroscopy is conducted under an increasing driving field B_ 1, the Rabi spectrum evolves from a single resonance peak at s=\Omega_R, where \Omega_R=\gamma B_1 is the Rabi frequency (\gamma is the gyromagnetic ratio), to three peaks at s= \Omega_R, s=2\Omega_R, and at low s<< \Omega_R. The crossover between the two regimes takes place when \Omega_R exceeds the expectation value \delta_0 of the difference of the Zeeman energies within the pairs, which corresponds to the broadening of the magnetic resonance lines in the presence of disorder caused by hyperfine field or distributions of Lande g-factors. We capture this crossover by analytically calculating the shapes of all three peaks at arbitrary relation between \Omega_R and \delta_0. When the peaks are well-developed their widths are \Delta s ~ \delta_0^2/\Omega_R.Comment: 10 page, 5 figure

    Theory, Experimental Design and Econometrics Are Complementary (And So Are Lab and Field Experiments)

    Get PDF
    Experiments are conducted with various purposes in mind including theory testing, mechanism design and measurement of individual characteristics. In each case a careful researcher is constrained in the experimental design by prior considerations imposed either by theory, common sense or past results. We argue that the integration of the design with these elements needs to be taken even further. We view all these elements that make up the body of research methodology in experimental economics as mutually dependant and therefore take a systematic approach to the design of our experimental research program. Rather than drawing inferences from individual experiments or theories as if they were independent constructs, and then using the findings from one to attack the other, we recognize the need to constrain the inferences from one by the inferences from the other. Any data generated by an experiment needs to be interpreted jointly with considerations from theory, common sense, complementary data, econometric methods and expected applications. We illustrate this systematic approach by reference to a research program centered on large artefactual field experiments we have conducted in Denmark. An important contribution that grew out of our work is the complementarity between lab and field experiments.

    Estimating Subjective Probabilities

    Get PDF
    Subjective probabilities play a role in many economic decisions. There is a large theoretical literature on the elicitation of subjective probabilities, and an equally large empirical literature. However, there is a gulf between the two. The theoretical literature proposes a range of procedures that can be used to recover subjective probabilities, but stresses the need to make strong auxiliary assumptions or "calibrating adjustments" to elicited reports in order to recover the latent probability. With some notable exceptions, the empirical literature seems intent on either making those strong assumptions or ignoring the need for calibration. We illustrate how the joint estimation of risk attitudes and subjective probabilities using structural maximum likelihood methods can provide the calibration adjustments that theory calls for. This allows the observer to make inferences about the latent subjective probability, calibrating for virtually any well-specified model of choice under uncertainty. We demonstrate our procedures with experiments in which we elicit subjective probabilities. We calibrate the estimates of subjective beliefs assuming that choices are made consistently with expected utility theory or rank-dependent utility theory. Inferred subjective probabilities are significantly different when calibrated according to either theory, thus showing the importance of undertaking such exercises. Our findings also have implications for the interpretation of probabilities inferred from prediction markets.

    Retarded Green's Functions In Perturbed Spacetimes For Cosmology and Gravitational Physics

    Full text link
    Electromagnetic and gravitational radiation do not propagate solely on the null cone in a generic curved spacetime. They develop "tails," traveling at all speeds equal to and less than unity. If sizeable, this off-the-null-cone effect could mean objects at cosmological distances, such as supernovae, appear dimmer than they really are. Their light curves may be distorted relative to their flat spacetime counterparts. These in turn could affect how we infer the properties and evolution of the universe or the objects it contains. Within the gravitational context, the tail effect induces a self-force that causes a compact object orbiting a massive black hole to deviate from an otherwise geodesic path. This needs to be taken into account when modeling the gravitational waves expected from such sources. Motivated by these considerations, we develop perturbation theory for solving the massless scalar, photon and graviton retarded Green's functions in perturbed spacetimes, assuming these Green's functions are known in the background spacetime. In particular, we elaborate on the theory in perturbed Minkowski spacetime in significant detail; and apply our techniques to compute the retarded Green's functions in the weak field limit of the Kerr spacetime to first order in the black hole's mass and angular momentum. Our methods build on and generalizes work appearing in the literature on this topic to date, and lays the foundation for a thorough, first principles based, investigation of how light propagates over cosmological distances, within a spatially flat inhomogeneous Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) universe. This perturbative scheme applied to the graviton Green's function, when pushed to higher orders, may provide approximate analytic (or semi-analytic) results for the self-force problem in the weak field limits of the Schwarzschild and Kerr black hole geometries.Comment: 23 pages, 5 figures. Significant updates in v2: Scalar, photon and graviton Green's functions calculated explicitly in Kerr black hole spacetime up to first order in mass and angular momentum (Sec. V); Visser's van Vleck determinant result shown to be equivalent to ours in Sec. II. v3: JWKB discussion moved to introduction; to be published in PR
    corecore