48 research outputs found

    Dendritic Cells in Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) persists as a chronic inflammatory autoimmune disease and is characterized by the production of autoantibodies and immune complexes that affects multiple organs. The underlying mechanism that triggers and sustain disease are complex and involves certain susceptibility genes and environmental factors. There have been several immune mediators linked to SLE including cytokines and chemokines that have been reviewed elsewhere(1–3). A number of articles have reviewed the role of B cells and T cells in SLE(4–10). Here, we focus on role of dendritic cells (DC) and innate immune factors that may regulate autoreactive B cells

    Deficiency of AXL in Bone Marrow-Derived Cells Does Not Affect Advanced Atherosclerotic Lesion Progression

    Get PDF
    AXL, a member of the TAM (Tyro3, Axl, MerTK) family of receptors, plays important roles in cell survival, clearance of dead cells (efferocytosis), and suppression of inflammation, which are processes that critically influence atherosclerosis progression. Whereas MerTK deficiency promotes defective efferocytosis, inflammation, and plaque necrosis in advanced murine atherosclerosis, the role of Axl in advanced atherosclerosis progression is not known. Towards this end, bone marrow cells from Axl−/− or wild-type mice were transplanted into lethally irradiated Ldlr−/− mice. These chimeric mice were then fed the Western-type diet (WD) for 17 weeks. We demonstrate that lesional macrophages in WT mice express Axl but that Axl deficiency in bone marrow-derived cells does not affect lesion size, cellularity, necrosis, or inflammatory parameters in advanced atherosclerotic plaques. Moreover, apoptosis of lesional cells was unaffected, and we found no evidence of defective lesional efferocytosis. In contrast to previously reported findings with MerTK deficiency, hematopoietic cell-Axl deficiency in WD-fed Ldlr−/− mice does not affect the progression of advanced atherosclerosis or lesional processes associated with TAM receptor signaling. These findings suggest a heretofore unappreciated TAM receptor hierarchy in advanced atherosclerosis

    Interleukin-1β Promotes Repair of the CNS

    Get PDF
    Interleukin-1β (IL-1β) is a proinflammatory cytokine associated with the pathophysiology of demyelinating disorders such as multiple sclerosis and viral infections of the CNS. However, we demonstrate here that IL-1β appears to promote remyelination in the adult CNS. I

    Humanized mouse models for HIV-1 infection of the CNS

    Get PDF
    Since the onset of the HIV epidemic, there has been a shift from a deadly diagnosis to the management of a chronic disease. This shift is the result of the development of highly effective drugs that are able to suppress viral replication for years. The availability of these regimens has also shifted the neurocognitive pathology associated with infection from potentially devastating to a much milder phenotype. As the disease outcome has changed significantly with the availability of antiretroviral therapy, there is an opportunity to re-evaluate the currently available models to address the neurocognitive pathology seen in suppressed patients. In the following, we seek to summarize the current literature on humanized mouse models and their utility in understanding how HIV infection leads to changes in the central nervous systems (CNS). Also, we identify some of the unanswered questions regarding HIV infection of the CNS as well as the opportunities and limitations of currently existing models to address those questions. Finally, our conclusions indicate that the earlier humanized models used to study HIV infection in the CNS provided an excellent foundation for the type of work currently being performed using novel humanized mouse models. We also indicate the potential of some humanized mouse models that have not been used as of this time for the analysis of HIV infection in the brain

    Functional Genomic Analysis of Remyelination Reveals Importance of Inflammation in Oligodendrocyte Regeneration

    Get PDF
    Tumor necrosis factor alpha (TNFalpha), a proinflammatory cytokine, was shown previously to promote remyelination and oligodendrocyte precursor proliferation in a murine model for demyelination and remyelination. We used Affymetrix microarrays in this study to identify (1) changes in gene expression that accompany demyelination versus remyelination and (2) changes in gene expression during the successful remyelination of wild-type mice versus the unsuccessful attempts in mice lacking TNFalpha. Alterations in inflammatory genes represented the most prominent changes, with major histocompatibility complex (MHC) genes dramatically enhanced in microglia and astrocytes during demyelination, remyelination, and as a consequence of TNFalpha stimulation. Studies to examine the roles of these genes in remyelination were then performed using mice lacking specific genes identified by the microarray. Analysis of MHC-II-null mice showed delayed remyelination and regeneration of oligodendrocytes, whereas removal of MHC-I had little effect. These data point to the induction of MHC-II by TNFalpha as an important regulatory event in remyelination and emphasize the active inflammatory response in regeneration after pathology in the brain

    Early activation of the host complement system is required to restrict central nervous system invasion and limit neuropathology during Venezuelan equine encephalitis virus infection

    Get PDF
    Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus of the genus Alphavirus, family Togaviridae, that is responsible for sporadic outbreaks in human and equid populations in Central and South America. In order to ascertain the role that complement plays in resolving VEEV-induced disease, complement-deficient C3−/− mice were infected with a VEEV mutant (V3533) that caused mild, transient disease in immunocompetent mice. In the absence of a functional complement system, peripheral inoculation with V3533 induced much more severe encephalitis. This enhanced pathology was associated with a delay in clearance of infectious virus from the serum and more rapid invasion of the central nervous system in C3−/− mice. If V3533 was inoculated directly into the brain, however, disease outcome in C3−/− and wild-type mice was identical. These findings indicate that complement-dependent enhancement of peripheral virus clearance is critical for protecting against the development of severe VEEV-induced encephalitis

    17β-estradiol protects male mice from cuprizone-induced demyelination and oligodendrocyte loss

    Get PDF
    In addition to regulating reproductive functions in the brain and periphery, estrogen has trophic and neuroprotective functions in the central nervous system (CNS). Estrogen administration has been demonstrated to provide protection in several animal models of CNS disorders, including stroke, brain injury, epilepsy, Parkinson’s disease, Alzheimer’s disease, age-related cognitive decline and multiple sclerosis. Here, we use a model of toxin-induced oligodendrocyte death which results in demyelination, reactive gliosis, recruitment of oligodendrocyte precursor cells and subsequent remyelination to study the potential benefit of 17β-estradiol (E2) administration in male mice. The results indicate that E2 partially ameliorates loss of oligodendrocytes and demyelination in the corpus callosum. This protection is accompanied by a delay in microglia accumulation as well as reduced mRNA expression of the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα), and insulin-like growth factor-1 (IGF-1). E2 did not significantly alter the accumulation of astrocytes or oligodendrocyte precursor cells, or remyelination. These data obtained from a toxin-induced, T cell-independent model using male mice provide an expanded view of the beneficial effects of estrogen on oligodendrocyte and myelin preservation

    Increased Hematopoietic Cells in the mertk-/- Mouse Peritoneal Cavity: A Result of Augmented Migration

    Get PDF
    The peritoneal cavity is recognized as an important site for autoreactive B cells prior to their transit to other immune tissues; however, little is known of the genes that may regulate this process. Mice lacking the receptor tyrosine kinase Mertk display a lupus-like autoimmune phenotype with splenomegaly and high autoantibodies titers. Here, we investigate whether Mertk regulates the composition of peritoneal cells that favor an autoimmune phenotype. We found an increase in the number of macrophages, DC, plasmacytoid DC, T cells and B cells in the peritoneal cavity of mertk−/− mice when compared to wild-type mice. This disparity in cell numbers was not due to changes in cell proliferation or cell death. In adoptive transfer experiments, we showed an increase in migration of labeled donor cells into the mertk−/− peritoneal cavity. In addition, bone marrow chimeric mice showed hematopoietic-derived factors were also critical for T cell migration. Consistent with this migration and the increase in the number of cells, we identified elevated expression of CXCL9, its receptor CXCR3, and IL-7 receptor on peritoneal cells from mertk−/− mice. To corroborate the migratory function of CXCR3 on cells, the depletion of CXCR3 donor cells significantly reduced the number of adoptively transferred cells that entered into the peritoneum of mertk−/− mice. This control of peritoneal cells numbers correlated with autoantibody production and was exclusively attributed to Mertk since mice lacking other family members, Axl or Tyro 3, did not display dysregulation in peritoneal cell numbers or the autoimmune phenotype

    MHC class II exacerbates demyelination in vivo independently of T cells

    Get PDF
    We have shown previously the importance of MHC class II for central nervous system remyelination; however, the function of MHC class II during cuprizone-induced demyelination has not been examined. Here, we show that I-Aβ−/− mice exhibit significantly reduced inflammation and demyelination. RAG-1−/− mice are indistinguishable from controls, indicating T cells may not play a role. The role of MHC class II depends on an intact cytoplasmic tail that leads to the production of IL-1β, TNF-α, and nitric oxide, and oligodendrocyte apoptosis. Thus, the function of MHC class II cytoplasmic tail appears to increase microglial proliferation and activation that exacerbates demyelination

    IgG-Immune Complexes Promote B Cell Memory by Inducing BAFF

    Get PDF
    Memory B cell responses are vital for protection against infections, but must also be regulated to prevent autoimmunity. Cognate T cell help, somatic hypermutation, and affinity maturation within germinal centers (GCs) are required for high affinity memory B cell formation; however, the signals that commit GC B cells to the memory pool remain unclear. In this study, we identify a role for IgG immune complexes (ICs), FcγRs, and BAFF during the formation of memory B cells in mice. We found that early secretion of IgG in response to immunization with a T-dependent antigen leads to IC-FcγR interactions that induce DCs to secrete BAFF which acts at or upstream of Bcl-6 in activated B cells. Loss of CD16, hematopoietic cell-derived BAFF, or blocking IC:FcγR regions in vivo diminished the expression of Bcl-6, the frequency of GC and memory B cells, and secondary antibody responses. BAFF also contributed to the maintenance and/or expansion of the Tfh population, although it was dispensable for their formation. Thus, early antibody responses contribute to the optimal formation of B cell memory through IgG-ICs and BAFF. Our work defines a new role for FcγRs in GC and memory B cell responses
    corecore