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Interleukin-13 Promotes Repair of the CNS
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Interleukin-18 (IL-18) is a proinflammatory cytokine associated
with the pathophysiology of demyelinating disorders such as
multiple sclerosis and viral infections of the CNS. However, we
demonstrate here that IL-183 appears to promote remyelination
in the adult CNS. In IL-718~/~ mice, acute demyelination pro-
gressed similarly to wild-type mice and showed parallel mature
oligodendrocyte depletion, microglia-macrophage accumula-
tion, and the appearance of oligodendrocyte precursors. In
contrast, IL-187/" mice failed to remyelinate properly, and this

appeared to correlate with a lack of insulin-like growth factor-1
(IGF-1) production by microglia—macrophages and astrocytes
and to a profound delay of precursors to differentiate into
mature oligodendrocytes. Thus, IL-18 may be crucial to the
repair of the CNS, presumably through the induction of astro-
cyte and microglia-macrophage-derived IGF-1.
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nation; cytokines; growth factors

Metabolic, toxic, or autoimmune insult of the adolescent and
adult CNS may lead to the depletion of mature oligodendrocyte
population within the lesion during demyelination (Blakemore,
1973; Yagima and Suzuki, 1979; Yao et al., 1995; Gensert and
Goldman, 1997; Mason et al., 2000a). Consequently, an alterna-
tive source of oligodendrocytes most likely participates in the
remyelination. Several studies have identified differentiating oli-
godendrocyte progenitors as the cells responsible for remyelinat-
ing lesions within the adolescent (Ludwin, 1979) and adult
(Gensert and Goldman, 1997; Mason et al., 2000a) CNS. The
factor(s) responsible for the recruitment and differentiation of
these progenitors in vivo has not been fully delineated.

One factor is a 17 kDa proinflammatory cytokine,
interleukin-18 (IL-1B) (Bauer et al., 1993; Sairanen et al., 1997),
that is produced primarily by microglia and macrophages (Giu-
lian et al., 1986; Bauer et al., 1993; Sairanen et al., 1997). This
cytokine, in turn, induces the production of IL-6 and tumor
necrosis factor-q, as well as nitric oxide (for review, see Lee et al.,
1995). It also induces the proliferation of macrophages (Feder
and Laskin, 1994) and astrocytes (Giulian and Lachman, 1985;
Giulian et al., 1988), both in vitro and in vivo, but not oligodendro-
cyte progenitors in vitro (Merrill, 1991). In contrast, IL-18 has been
shown to be cytotoxic to mature oligodendrocytes in vitro (Merrill,
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1991; Brogi et al., 1997). Therefore, IL-18 has been associated
predominantly with exacerbating pathology in the CNS.

Repair of insult to the CNS has been increasingly attributed to
immune responses (Diemel et al., 1998; Schwartz et al., 1999;
Warrington et al., 2000). Along these lines, IL-1B8 may activate
cells within the CNS to produce growth factors known to induce
the proliferation and differentiation of oligodendrocyte progeni-
tors in vitro (Araujo and Cotman, 1992; Silberstein et al., 1996;
Glazebrook et al., 1998). One of these growth factors, insulin-like
growth factor-1 (IGF-1), has been colocalized within demyelinat-
ing lesions of the CNS (Komoloy et al., 1992; Liu et al., 1994; Yao
et al., 1995) and shown to parallel the accumulation and differ-
entiation of oligodendrocyte progenitors (Mason et al., 2000a).
Furthermore, the early expression of IGF-1 before morphologic
demyelination protects mature oligodendrocytes from cell death
and promotes rapid repair of the lesion (Mason et al. 2000b).

To address the role of IL-18 in the remyelination process, we
used a model in which continuous cuprizone (bis-cyclohexanone
oxaldihydrazone) intoxication of adult C57BL/6 mice leads to
perturbation and death of mature oligodendrocytes. This is fol-
lowed by massive demyelination in the corpus callosum by 5
weeks (Hiremath et al., 1998; Morell et al., 1998; Mason et al.,
2000a). Simultaneously, oligodendrocyte progenitors accumulate
within the lesion beginning at 3—-4 weeks and results in mature
oligodendrocytes repopulation beginning at week 6, with remy-
elination occurring over the next 4 weeks (Morell et al., 1998;
Mason et al., 2000a, 2001). In this study, we noted that IL-13 was
upregulated in mice exposed to cuprizone and used IL-1B-
deficient mice (Shornick et al., 1996) to examine the functional
importance of IL-18 in demyelination-remyelination.

MATERIALS AND METHODS

Induction of demyelination-remyelination. IL-13 '~ mice on the C57BL/6
background were bred in our mouse colony, and C57BL/6J (B6) mice
were purchased from The Jackson Laboratory (Bar Harbor, ME). At 8
weeks of age, the mice were fed a diet containing 0.2% cuprizone (Sigma,
St. Louis, MO) by weight, mixed into ground mouse chow for 6 weeks to
induce demyelination (Hiremath et al., 1998). Subsequently, mice were



Mason et al. « IL-18 Promotes Remyelination of the CNS

|>

Number of IL-1beta* Cells/mm? (Sl

IL-1 beta
01 2 3 45 6 7 810 12 wks
012 3 45 6 7 810 12 wks
01 2 3 45 6 7 8 10 12 wks
—>

Demyelination Remyelination

Figure 1.

J. Neurosci., September 15, 2001, 27(18):7046-7052 7047

.6.7.8. }

-~

1400 -
1200 -
1000

800 -

600 -

400 -

200 - " I

e A AR
0 1 2 3 4

Demyelination

- -

Weeks of Treatment

0 12

-

5

Remyelination

Expression of IL-18 during demyelination-remyelination in wild-type mice. 4, Reverse transcription-PCR of RNA extracted from brains of

mice at weekly intervals was examined for IL-13 and IGF-1. Mice were exposed to cuprizone for 6 weeks and allowed to recover. A representative
example of three time course experiments is illustrated. B, The number of IL-18" cells in the corpus callosum at the level of the fornix. The mean and
SEM bars representing the number of IL-18" cells per square millimeter are plotted for the triplicate set of samples.

returned to a normal diet for another 6 weeks to allow remyelination to
occur. Sham and cuprizone-treated mice were killed weekly. The fore-
brains from the mice were removed for RNA, protein, and immunobhis-
tochemical analysis as described previously (Mason et al., 2000a). All
mice were maintained in accordance with guidelines approved by the
Institutional Animal Care and Use Committee and the University of
North Carolina Division of Laboratory Animal Medicine.

RNA analysis. Total RNA was prepared from half of the forebrain of
each mouse, reverse transcribed into cDNA, and then amplified by PCR
as described previously (Mason et al., 2000a). Primer sequences used for
the PCR reactions have been published previously: IGF-1 (Shinar and
McMorris, 1995) and IL-1pB and glyceraldehyde-3-phosphate dehydroge-
nase (G3PDH) (Bencsik et al., 1996). Templates were denatured at 95°C
for 5 min, followed by 30 cycles of denaturation (95°C for 1 min) primer
annealing (62°C for 1.5 min) and extension (72°C for 1 min), with a final
extension step at 72°C for 15 min. The amplified cDNA mixture of each
sample was separated on a 2.5% agarose gel containing ethidium bromide
and photographed. Amplification of the housekeeping gene G3PDH
confirmed RNA amplification and equal loading of each sample. The
mRNA profiles were semiquantitated using a densitometer to normalize
all samples for comparison.

Immunohistochemistry. All comparative analyses were focused in the
corpus callosum on either side of midline in sections 220-260 of the
mouse brain atlas (Sidman et al., 1971). The frozen sections were stained
for IL-1B (Endogen, Woburn, M A), IGF-1 (the rabbit anti-IGF-1 anti-
body was a gift from Dr. Underwood, Chapel Hill, NC), and NG2 (the
rabbit anti-NG2 antibody was a gift from Dr. William Stallcup, San
Diego, CA) as described previously (Mason et al., 2000a).

In addition, adjacent sections were double-stained for GFAP, an as-
trocyte marker (Santa Cruz Biotechnology, Santa Cruz, CA), and either
IL-1B or IGF-1, or sections were stained for CD11b (Mac-1), a micro-
glial-macrophage marker (PharMingen, San Diego, CA) and either
IL-1B or IGF-1. Tissue sections were incubated with rabbit anti-IGF-1
antibody and either goat anti-GFAP or biotin-conjugated rat anti-CD11b
antibody, or rabbit anti-IL-18 antibody and either goat anti-GFAP or
biotin-conjugated rat anti-CD11b antibody overnight at 4°C. The GFAP-
IGF-1 and GFAP-IL-1pB-labeled sections were then incubated with
biotin-conjugated horse anti-goat secondary antibody (Vector Laborato-
ries, Burlingame, CA). The GFAP-IGF-1, GFAP-IL-1B, CD11b-1GF-1,
and CD11b-IL-1B-labeled sections were incubated with a combination
of a rhodamine-conjugated goat anti-rabbit secondary antibody (Vector
Laboratories) strepavidin—fluorescein complex (Vector Laboratories)
before mounting with a coverslip. No positive cell stain was observed in
tissue sections incubated with control isotype-matched antibodies (rabbit
IgG, Vector Laboratories; goat IgG, Vector Laboratories; or rat 1gG,,,
PharMingen) in place of the primary antibodies. Positive-stained cells
were quantified only if a nucleus was observed.

Paraffin-embedded sections were labeled for the Pi isoform of gluta-
thione S-transferase (GST-Pi; a mature oligodendrocyte marker) or

stained with Ricinus communis agglutin-1 (RCA-1; marks microglia—
macrophage) as described previously (Morell et al., 1998; Mason et al.,
2000a).

Cell number quantification. 1L-18", IL-18"~GFAP *, IL-18 *-Mac-1*,
IGF-1*,NG2", RCA-1", and GST-Pi " cells from three to four mice were
analyzed using a Nikon (Tokyo, Japan) Optiphot FXA microscope with
epifluorescence optics as described previously (Mason et al., 2000a).

Electron microscopy. Tissue samples from the forebrain of 0, 5, and 10
week treated mice (n = 3) were processed for electron microscopic
analysis, and the cross-sections of the corpus callosi were analyzed as
described previously (Coetzee et al., 1996; Dupree et al., 1998).

Protein analysis. Protein was extracted from half of a frozen forebrain of
the wild-type and IL-I18 '~ mice. The frozen forebrains were homoge-
nized and boiled in 1% SDS as described previously (Coetzee et al., 1996).
Protein concentrations were determined using a protein assay kit (Bio-Rad,
Hercules, CA) with bovine serum albumin as the standard. Quantification
of IGF-1 protein levels were determined by radioimmunoassay as described
previously (Ye et al., 1996) using 20 ug of total protein.

Statistical analysis. Statistical comparisons were made using a one-
factor between-subjects ANOVA. Multiple comparisons among treat-
ment groups were made with Tukey’s test.

RESULTS

Expression of IL-18 precedes an increase in

IGF-1 expression

The expression of IL-18 and IGF-1 mRNA during demyelination
and remyelination was analyzed from the forebrains of wild-type
mice. IL-18 mRNA levels, although undetectable in sham mice,
was markedly upregulated during cuprizone exposure (Fig. 14).
At week 3, there was a dramatic increase in IL-13 that was
sustained up to 6 weeks. Thereafter, when cuprizone was re-
moved from the diet at week 6 and remyelination was allowed to
proceed, IL-18 mRNA levels diminished to control levels. The
mRNA levels for IGF-1 followed the increased expression of
IL-1B (Fig. 1A4), in which a low level of IGF-1 was detected at
week 3 followed by an increased expression from week 4 through
week 7 (1 week into the remyelination phase).

Microglia-macrophages and some astrocytes

produce IL-1(

A few IL-1B™ cells began to accumulate in the corpus callosum at
1 and 2 weeks compared with untreated control mice (Figs. 1B,
2A). This number dramatically increased and coincided with the
progression of demyelination at 3 weeks in wild-type mice (Figs.
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Figure 2. Most microglia-macrophages and some astrocytes
express IL-1B during demyelination-remyelination in wild-
type mice. A, Few or no IL-18" cells are present in the
untreated corpus callosum. B, A large accumulation of IL-
1B* cells begins at week 3 in the medial region of the corpus
callosum posterior to the fornix. C-E, Representative sec-
tions demonstrating the colocalization (arrows) of IL-1pB-
expressing cells ( green-stained cells in C) to nearly all of the
Mac-1" macrophages (red-stained cells in D and overlaid in
E) in the corpus callosum at week 4. F-H, The colocalization
(arrows) of a few IL-1B-expressing cells ( green-stained cells
in F) to GFAP " astrocytes (red-stained cells in G and over-
laid in H') in the corpus callosum. Scale bar, 30 um.

Figure 3. Representative electron micrographs of the my-
elinated, demyelinated, and remyelinated axons in the corpus
callosum of wild-type and IL-13~/~ mice. Almost all axons
are myelinated in the corpus callosum of untreated wild-type
(A) and IL-18~'~ (B) mice. Negligible number of myelinated
axons, corresponding to peak demyelination, are present in
the corpus callosum of 5 week treated wild-type (C) and
IL-187/~ (D) mice. E, Wild-type mice show that a large
portion of the axons in the corpus callosum have remyeli-
nated, but /L-187/~ mice show fewer remyelinated axons at
week 10 (F), 4 weeks after removal of cuprizone. Scale bar,
1.2 pm.

1B, 2B). The peak in both the number of IL-18" cells and
demyelination within the corpus callosum between 4 and 5 weeks
(Fig. 1B) is temporally and spatially correlated with the dramatic
accumulation of IGF-1" cells (see Fig. 64) and NG2 " oligoden-
drocyte progenitors (Mason et al., 2000a) within the demyelinat-
ing lesion. Thereafter, a large number of IL-18 " cells remained
in the corpus callosum during the remyelination process (Fig.
1B), when mature oligodendrocytes begin to repopulate the le-
sion area (Mason et al., 2000a).

The large accumulation of IL-1B-expressing cells in the corpus
callosum of wild-type mice detected at week 3 (Fig. 2B) closely
parallels the increased presence of microglia—-macrophages and
astrocytes as reported previously (Hiremath et al., 1998; Morell et
al., 1998). Immunohistochemistry showed that 81% of the IL-
18" cells were Mac-1" microglia-macrophages at week 4,
whereas the remainder were mostly astrocytes. Nearly all of

Mason et al. ¢ IL-13 Promotes Remyelination of the CNS

Mac-1" microglia-macrophages (Fig. 2C-E) and only 49% of
GFAP " astrocytes colocalized with IL-18 expression, as demon-
strated in Figure 2F-H. These results suggest that microglia—
macrophages are the predominant cell type producing IL-13
during the peak stages of demyelination.

Demyelination and oligodendrocyte depletion
progressed similarly in both wild-type and

IL-1B7/~ mice

A similar number of GST-Pi " mature oligodendrocytes and my-
elinated axons (85.6 = 4.8 vs 93.8 * 2.3%, respectively) was
observed in both untreated IL-18 '~ and wild-type mice (Figs.
3A4,B, 4A4,B, 5). During exposure to cuprizone, the axons in the
corpus callosum of IL-18 7'~ (4.2 = 1.8% myelinated) and wild-
type (7.6 £ 2.1% myelinated) mice were almost completely
demyelinated at 5 weeks (Fig. 3C.D). Thus, IL-18 alone does not
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Figure 4. GST-Pi™ mature oligodendrocytes in the corpus callosum of
wild-type and IL-18~/~ mice during demyelination and remyelination.
GST-Pi* mature oligodendrocytes in the corpus callosum of untreated
wild-type (A4) and IL-187'~ (B) mice at 0 weeks. Mature oligodendrocyte
recovery of wild-type (C) and IL-18~/~ (D) mice at 5 weeks of treatment.
Recovery of GST-Pi* cells in the corpus callosum of wild-type (E) and
IL-1B87/~ (F) mice at 10 weeks. G, The mean and SEM bars representing
the number of GST-Pi ™" cells per square millimeter are plotted for the
triplicate set of samples. Scale bar, 50 um. CC, Corpus callosum. The
white dashed line separates the corpus callosum and fornix. *p < 0.005;
**p < 0.0005.

appear to contribute to demyelination. Coinciding with this de-
myelination at 5 weeks was the accumulation of RCA-1" micro-
glia-macrophage within the lesion site in both IL-18 '~ (3165 =
127 per square millimeter) and wild-type (2949 =+ 226 per square
millimeter) mice. In addition, GST-Pi " mature oligodendrocytes
were also depleted within the lesion in both wild-type and IL-
187/~ mice at 5 weeks (Figs. 4C,D, 5), as expected from our
previous report (Mason et al., 2000). These results suggest that
the absence of IL-1B3 does not have a dramatic effect on the
pathological processes induced by cuprizone exposure.

Remyelination is dramatically reduced in the absence
of IL-183

A large number of axons in wild-type mice showed a substantial
recovery (67.1 = 2.5%) from the demyelinating insult by 10
weeks, 4 weeks after cuprizone was removed from the diet (Fig.
3E). In contrast, there was a significant (p < 0.0002) reduction in
the number of remyelinated axons (45.1 * 1.6%) within the
corpus callosum of IL-18~'~ mice at 10 weeks (Fig. 3F). Thus,
IL-1B appears to play a prominent role in promoting the remy-
elination process.
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Figure 5. The presence of NG2 ™" cells during demyelination and remy-
elination in IL-18~/~ mice. NG2 ™ oligodendrocytes accumulate in the
corpus callosum of wild-type (A) and IL-1B-deficient (B) mice after 5
weeks of cuprizone treatment. A reduction in the number of NG2™*
oligodendrocyte progenitors (450 = 30 cells/mm?) in the corpus callosum
was observed in wild-type mice (C) (only stained cells with nuclei were
counted). This was in contrast to the continued presence of progeni-
tors (703 = 38 cellsymm?) in the corpus callosum of IL-18~'~ mice
after 1 week of recovery after 6 weeks of cuprizone treatment (D).
Scale bar, 20 pm.

Repopulation of the GST-Pi* mature oligodendrocytes

is dramatically reduced in the absence of IL-18

We have shown previously that new oligodendrocytes repopulate
the corpus callosum and are presumably responsible for remyeli-
nating the demyelinated lesion (Mason et al., 2000a). The lack of
proper remyelination in IL-18 '~ mice may be attributable to an
inability of these mice to regenerate new mature oligodendro-
cytes. After 5 weeks of exposure to cuprizone, the GST-Pi*
mature oligodendrocytes began to reappear within the demyeli-
nated corpus callosum of wild-type mice (Fig. 4C,E,G). However,
in the absence of IL-1B, there was a dramatic reduction in the
number of GST-Pi " oligodendrocytes and a significant delay in
their reappearance within the corpus callosum at 7 (p < 0.0005)
and 10 (p < 0.005) weeks (Fig. 4F,G). Thus, IL-18 appears to
facilitate the regeneration of the mature oligodendrocyte popu-
lation after a demyelinating insult.

NG2™* oligodendrocyte progenitor accumulation
occurs in the absence of IL-13

Failure of mature oligodendrocytes to adequately repopulate the
demyelinated corpus callosum in /L-18 /" mice warranted ex-
amination of oligodendrocyte progenitors. A large number of
NG2 ™" progenitors accumulated within the demyelinated corpus
callosum at 5 weeks in both wild-type (734 = 41 cells/mm?) and
IL-18~/~ (710 = 78 cellsymm?) mice (Fig. 54,B). During remy-
elination when progenitors presumably differentiate into mature
oligodendrocytes, NG2* progenitor cells were significantly di-
minished (p < 0.004) in number (450 = 30 cells/mm?) by week 7
in wild-type mice compared with that observed in IL-18~/~ mice
(703 = 38 cellsymm?) (Fig. 5C,D). Thus, although NG2* cells
diminished in numbers presumably by differentiating into mature
oligodendrocytes during recovery in wild-type mice (Fig. 4G),
they appear to remain as progenitors and are not able to mature
in the absence of IL-18 and/or IL-1B-derived factors.

IGF-1* microglia-macrophages and astrocytes
accumulate during demyelination in wild-type mice

Very little IGF-1 protein or IGF-17" cells were present in the
corpus callosum during the first 2 weeks of treatment (Fig. 64, B).
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Figure 6. The number of IGF-1" cells and amount of IGF-1 protein
increase within a demyelinating corpus callosum in wild-type mice but not
in IL-18~/~ mice. A, The mean and SEM bars representing the number of
IGF-1" cells per square millimeter in wild-type mice is plotted for the
duplicate set of samples (*p < 0.001). B, The mean and SEM bars
representing the amount of IGF-1 protein within the corpus callosum of
wild-type and IL-18~'~ mice is plotted for the triplicate set of samples.
KO, Knock-out.

At 3 weeks, an increase in both IGF-1 protein levels and the
number of IGF-17 cells was observed, and this was consistent
with the appearance of IGF-1 mRNA observed in Figure 1. The
amount of IGF-1 protein and the number of IGF-1" cells in the
corpus callosum peaked between 4 and 5 weeks, with a large
number of IGF-1* cells remaining in the corpus callosum
throughout the remyelination process (Figs. 6A4,B, 74,C). Thus,
elevated numbers of IGF-17 cells in the corpus callosum corre-
lates with increased levels of IGF-1 mRNA and IGF-1 protein.

The accumulation of IGF-1" cells parallels the accumulation
of microglia—-macrophages and astrocytes in the demyelinating
corpus callosum as reported previously (Hiremath et al., 1998;
Morell et al., 1998). Figure 7E-J demonstrates colocalization of
IGF-1 to nearly all GFAP ™ astrocytes and to a subpopulation of
Mac-1" microglia-macrophages. This finding suggests that, not
only are astrocytes capable of IGF-1 production, but microglia—
macrophages also are responsible for producing IGF-1 within the
demyelinating lesion.

Lack of IGF-1-producing cells in the absence of IL-18

In contrast to wild-type mice, there was no increase in IGF-1
protein and no IGF-17 cells detected within a demyelinating
corpus callosum at 5 weeks (Figs. 6B, 7B) or a remyelinating
corpus callosum at 10 weeks (Fig. 7D) in IL-13 '~ mice. The lack
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Figure 7. The absence of IGF-1" astrocytes and microglia-macrophages
during demyelination and remyelination in IL-18~'~ mice. IGF-17 cells
appear in the corpus callosum of wild-type mice (A) but not in IL-1p3-
deficient mice (B) after 5 weeks of treatment. IGF-1 " cells remain in the
corpus callosum of wild-type mice (C) undergoing remyelination but are
absent in IL-1B-deficient mice (D) after 1 week of recovery after 6 weeks
of cuprizone treatment. E-J/, Representative sections from wild-type mice
demonstrating the colocalization of IGF-1 to GFAP " cells and Mac-1"
cells within the demyelinating corpus callosum at 4 weeks. E-G, The
colocalization (arrows) of IGF-1" cells ( green-stained cells in E)) to nearly
all of the GFAP " astrocytes (red-stained cells in F and overlaid in G) within
the lesion. H-J, The colocalization (arrows) of a few IGF-1" cells ( green-
stained cells in H) to Mac-1" microglia-macrophages (red-stained cells in I
and overlaid in J)) within the lesion. Scale bars: A-D, 20 um; E-H, 10 um.

of IGF-1 expression in IL-18 '~ mice is attributable to a dimin-
ished IGF-1 mRNA transcription (J. L. Mason, unpublished
observation). The lack of IGF-1 is not attributable to reduced
numbers of microglia—macrophages, which accumulate similarly
in the corpus callosum of wild-type and IL-18~'~ mice, as de-
scribed above. Thus, IL-18 appears to be a critical factor in
mediating the production of IGF-1 during demyelination and
remyelination. The inability of the oligodendrocyte progenitors
to differentiate properly may be attributable to this absence of
IGF-1.

DISCUSSION

Although the primary insult to oligodendrocytes is toxicity to
cuprizone, the proinflammatory role associated with IL-13 sug-
gested that its absence in IL-18 /" mice during acute demyeli-
nation would result in an ameliorated neuropathology. Our report
is contrary to the notion that IL-18 would exacerbate demyeli-
nating diseases. We demonstrate a number of molecular and
biological events relating IL-18 to the remyelination process. (1)
IL-1B expression appears to precede and then parallel the ex-
pression of IGF-1 during demyelination and remyelination. (2) In
the absence of IL-1B, demyelination, mature oligodendrocyte
depletion, and the accumulation of oligodendrocyte progenitors
within demyelinating lesions progressed similarly to wild-type
mice. (3) IGF-1 protein and mRNA levels are not elevated and
IGF-1" cells are not present within lesions in mice deficient for
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IL-1B. (4) The lack of IGF-1 within the lesions in IL-18 '~ mice
is not attributable to the absence or reduced numbers of micro-
glia—-macrophages within the lesion. (5) IL-18 (and perhaps
IGF-1) is important for normal regeneration of the mature oli-
godendrocyte population from a normal pool of progenitors and
for remyelination.

The expression of IL-1 in wild-type mice that were exposed to
cuprizone correlated with active demyelination and smaller ax-
onal caliber, microglia—-macrophage accumulation, IGF-1 expres-
sion, and the recruitment oligodendrocyte progenitors (Figs. 1,
2B, 6B,7) (Hiremath et al., 1998; Morell et al., 1998; Mason et al.,
2000a, 2001). Our report of microglia-macrophages as the pre-
dominant cell type expressing IL-1p is consistent with previous
investigations (Giulian et al., 1986; Bauer et al., 1993). We also
observed some IL-1B-producing astrocytes, which both supports
(Giulian et al., 1986; Sairanen et al., 1997) and contradicts (Bauer
et al., 1993) previous observations concerning the ability of as-
trocytes to produce IL-18. The data here suggest that microglia—
macrophages are the predominant source of IL-1 and they appear
to be a strategic cell type in the remyelination process.

Surprisingly, the absence of IL-18 did not prevent the deple-
tion of mature oligodendrocytes, presumably by apoptosis during
the first 4 weeks into demyelination (Mason et al., 2000a), or
myelin pathology. Although cuprizone toxicity is believed to be
the primary insult to oligodendrocytes, it is thought that proin-
flammatory cytokines such as IL-1 may exacerbate neuropathol-
ogy. Indeed, demyelination appeared similar in the presence or
absence of IL-1B within the scoring area of the corpus callosum;
however, in the IL-18~'~ mice, demyelination encompassed
other more peripheral areas of the corpus callosum (data not
shown). This observation would suggest that IL-18 may be some-
what protective even during demyelination, which is contrary to
in vitro work citing that IL-1 is detrimental to oligodendrocytes
(Merrill, 1991). Furthermore, the typical accumulation of micro-
glia-macrophages or oligodendrocyte progenitors after exposure
to cuprizone, either as the result of progenitor migration from
other areas of the brain and/or the proliferation and activation of
local progenitors (Mason et al., 2000a), is not dependent on IL-13
(Fig. 5). This is consistent with previous in vitro studies demon-
strating the inability of IL-18 to induce the proliferation or
differentiation of oligodendrocyte progenitors (Merrill, 1991).
However, IGF-1 can induce the differentiation of oligodendrocyte
progenitors into mature oligodendrocytes (McMorris et al., 1986;
McMorris and Dubois-Dalq, 1988; Mozell and McMorris, 1991).
Our data in this report, showing an apparent block in oligoden-
drocyte differentiation and perhaps mature oligodendrocyte sur-
vival during remyelination, is consistent with the lack of IGF-1
production that correlates well with the absence of IL-13 (Mason
et al., 2000a).

The absence of IL-183 appeared to have a profound effect on
the recovery of mature oligodendrocyte and remyelination in the
CNS. There is a reduction in the mature oligodendrocyte popu-
lation between the first (week 7) (Fig. 4C,D,G) and fourth (week
10) (Fig. 4E-G) week into recovery in the IL-18 '~ mice com-
pared with that observed in the wild-type mice. Consequently,
there is also a significant reduction in the number of axons that
were remyelinated in the IL-18~/~ mice compared with the
wild-type mice at 10 weeks (Fig. 3E,F). Interestingly, there was
a delayed regeneration of a small population of mature oligoden-
drocytes in the IL-18 '~ mice at 10 weeks (Fig. 4F,G), suggest-
ing that additional factors, whose expression is not dependent on

J. Neurosci., September 15, 2001, 27(18):7046-7052 7051

IL-1B, are contributing to the delayed partial remyelination ob-
served in these mice.

Our results are consistent with others in demonstrating the
ability of astrocytes to produce IGF-1 within demyelinating le-
sions (Komoly et al., 1992; Liu et al., 1994; Yao et al., 1995).
However, our work showed for the first time that microglia—
macrophages within demyelinating lesions also produce IGF-1.
Furthermore, it has been shown previously that microglia—mac-
rophages express an array of growth factor mRNAs in vitro
(Rappolee et al., 1988; Elkabes et al., 1996), including IGF-1
mRNA (Arkins et al., 1993). This presence of microglia—mac-
rophage is associated with active myelination during development
(Hutchins et al., 1992; Ellison and de Vellis, 1995) and with the
ability of macrophages to induce myelin gene expression in oli-
godendroglial cultures (Hamilton and Rome, 1994; Laughlin et
al., 1997). Our results fit well with the hypothesis that microglia—
macrophage may be acting to promote remyelination. By produc-
ing IL-1B, an induction of growth-promoting factors such as
IGF-1 may be fostering mature oligodendrocyte repopulation and
remyelination during a pathological insult within the CNS.
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