6,967 research outputs found

    Environment assisted degradation mechanisms in advanced light metals

    Get PDF
    The general goals of the research program are to characterize alloy behavior quantitatively and to develop predictive mechanisms for environmental failure modes. Successes in this regard will provide the basis for metallurgical optimization of alloy performance, for chemical control of aggressive environments, and for engineering life prediction with damage tolerance and long term reliability

    Zero modes on cosmic strings in an external magnetic field

    Full text link
    A classical analysis suggests that an external magnetic field can cause trajectories of charge carriers on a superconducting domain wall or cosmic string to bend, thus expelling charge carriers with energy above the mass threshold into the bulk. We study this process by solving the Dirac equation for a fermion of mass mfm_f and charge ee, in the background of a domain wall and a magnetic field of strength BB. We find that the modes of the charge carriers get shifted into the bulk, in agreement with classical expectations. However the dispersion relation for the zero modes changes dramatically -- instead of the usual linear dispersion relation, ωk=k\omega_k =k, the new dispersion relation is well fit by ωmftanh(k/k)\omega \approx m_f tanh(k/k_*) where k=mfk_*=m_f for a thin wall in the weak field limit, and k=eBwk_*=eBw for a thick wall of width ww. This result shows that the energy of the charge carriers on the domain wall remains below the threshold for expulsion even in the presence of an external magnetic field. If charge carriers are expelled due to an additional perturbation, they are most likely to be ejected at the threshold energy mf\sim m_f.Comment: 9 pages, 4 figure

    The Metallicity and Reddening of Stars in the Inner Galactic Bulge

    Get PDF
    We present a preliminary analysis of K, J-K color magnitude diagrams (CMDs) for 7 different positions on or close to the minor axis of the Milky Way at Galactic latitudes between +0.1^\circ and -2.8^\circ. From the slopes of the (linear) giant branches in these CMDs we derive a dependence of on latitude for b between -0.8^\circ and -2.8^\circ of -0.085 \pm 0.033 dex/degree. When combined with the data from Tiede et al. we find for -0.8^\circ \leq b \leq -10.3^\circ the slope in is -0.064 \pm 0.012 dex/degree. An extrapolation to the Galactic Center predicts [Fe/H] = +0.034 \pm 0.053 dex. We also derive average values for the extinction in the K band (A_K) of between 2.15 and 0.27 for the inner bulge fields corresponding to average values of E(J-K) of between 3.46 and 0.44. There is a well defined linear relation between the average extinction for a field and the star-to-star scatter in the extinction for the stars within each field. This result suggests that the typical apparent angular scale size for an absorbing cloud is small compared with the field size (90\arcsec on a side). Finally, from an examination of the luminosity function of bright giants in each field we conclude that the young component of the stellar population observed near the Galactic center declines in density much more quickly than the overall bulge population and is undetectable beyond 1^\circ from the Galactic center.Comment: accepted for publication in Astron. Jour. Compressed file contains the text, 9 figures, and 6 tables prepared with AAS Latex macros v. 4.

    Probing the Super Star Cluster Environment of NGC 1569 Using FISICA

    Full text link
    We present near-IR JH spectra of the central regions of the dwarf starburst galaxy NGC 1569 using the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA). The dust-penetrating properties and available spectral features of the near-IR, combined with the integral field unit (IFU) capability to take spectra of a field, make FISICA an ideal tool for this work. We use the prominent [He I] (1.083\mu m) and Pa\beta (1.282 \mu m) lines to probe the dense star forming regions as well as characterize the general star forming environment around the super star clusters (SSCs) in NGC 1569. We find [He I] coincident with CO clouds to the north and west of the SSCs, which provides the first, conclusive evidence for embedded star clusters here.Comment: 6 pages, 3 figures, accepted for publication in the MNRA

    Environment assisted degradation mechanisms in aluminum-lithium alloys

    Get PDF
    Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this

    Remote sensing vegetation index methods to evaluate changes in greenness and evapotranspiration in riparian vegetation in response to the Minute 319 environmental pulse flow to Mexico

    Get PDF
    During the spring of 2014, 130 million&thinsp;m3 of water were released from the United States' Morelos Dam on the lower Colorado River to Mexico, allowing water to reach the Gulf of California for the first time in 13 years. Our study assessed the effects of water transfer or ecological environmental flows from one nation to another, using remote sensing. Spatial applications for water resource evaluation are important for binational, integrated water resources management and planning for the Colorado River, which includes seven basin states in the US plus two states in Mexico. Our study examined the effects of the historic binational experiment (the Minute 319 agreement) on vegetative response along the riparian corridor. We used 250&thinsp;m Moderate Resolution Imaging Spectroradiometer (MODIS), Enhanced Vegetation Index (EVI) and 30&thinsp;m Landsat 8 satellite imagery to track evapotranspiration (ET) and the normalized difference vegetation index (NDVI). Our analysis showed an overall increase in NDVI and evapotranspiration (ET) in the year following the 2014 pulse, which reversed a decline in those metrics since the last major flood in 2000. NDVI and ET levels decreased in 2015, but were still significantly higher (P&thinsp;&lt;&thinsp;0.001) than pre-pulse (2013) levels. Preliminary findings show that the decline in 2015 persisted into 2016 and 2017. We continue to analyse results for 2018 in comparison to short-term (2013–2018) and long-term (2000–2018) trends. Our results support the conclusion that these environmental flows from the US to Mexico via the Minute 319 “pulse” had a positive, but short-lived (1 year), impact on vegetation growth in the delta.</p

    The Bolocam 1.1 mm Lockman Hole Galaxy Survey: SHARC II 350 micron Photometry and Implications for Spectral Models, Dust Temperatures, and Redshift Estimation

    Get PDF
    We present 350 micron photometry of all 17 galaxy candidates in the Lockman Hole detected in a 1.1 mm Bolocam survey. Several of the galaxies were previously detected at 850 microns, at 1.2 mm, in the infrared by Spitzer, and in the radio. Nine of the Bolocam galaxy candidates were detected at 350 microns and two new candidates were serendipitously detected at 350 microns (bringing the total in the literature detected in this way to three). Five of the galaxies have published spectroscopic redshifts, enabling investigation of the implied temperature ranges and a comparison of photometric redshift techniques. Lambda = 350 microns lies near the spectral energy distribution peak for z = 2.5 thermally emitting galaxies. Thus, luminosities can be measured without extrapolating to the peak from detection wavelengths of lambda > 850 microns. Characteristically, the galaxy luminosities lie in the range 1.0 - 1.2 x 10^13 L_solar, with dust temperatures in the range of 40 K to 70 K, depending on the choice of spectral index and wavelength of unit optical depth. The implied dust masses are 3 - 5 x 10^8 M_solar. We find that the far-infrared to radio relation for star-forming ULIRGs systematically overpredicts the radio luminosities and overestimates redshifts on the order of Delta z ~ 1, whereas redshifts based on either on submillimeter data alone or the 1.6 micron stellar bump and PAH features are more accurate.Comment: In Press (to appear in Astrophysical Journal, ApJ 20 May 2006 v643 1) 47 pages, 10 figures, 4 table
    corecore