15 research outputs found
Bayesian multilingual topic model for zero-shot cross-lingual topic identification
This paper presents a Bayesian multilingual topic model for learning
language-independent document embeddings. Our model learns to represent the
documents in the form of Gaussian distributions, thereby encoding the
uncertainty in its covariance. We propagate the learned uncertainties through
linear classifiers for zero-shot cross-lingual topic identification. Our
experiments on 5 language Europarl and Reuters (MLDoc) corpora show that the
proposed model outperforms multi-lingual word embedding and BiLSTM sentence
encoder based systems with significant margins in the majority of the transfer
directions. Moreover, our system trained under a single day on a single GPU
with much lower amounts of data performs competitively as compared to the
state-of-the-art universal BiLSTM sentence encoder trained on 93 languages. Our
experimental analysis shows that the amount of parallel data improves the
overall performance of embeddings. Nonetheless, exploiting the uncertainties is
always beneficial.Comment: Requires a major revisio
Phonotactic language recognition using i-vectors and phoneme posteriogram counts
This paper describes a novel approach to phonotactic LID, where instead of using soft-counts based on phoneme lattices, we use posteriogram to obtain n-gram counts. The high-dimensional vectors of counts are reduced to low-dimensional units for which we adapted the commonly used term i-vectors. The reduction is based on multinomial subspace modeling and is designed to work in the total-variability space. The proposed technique was tested on the NIST 2009 LRE set with better results to a system based on using soft-counts (Cavg on 30s: 3.15% vs 3.43%), and with very good results when fused with an acoustic i-vector LID system (Cavg on 30s acoustic 2.4% vs 1.25%). The proposed technique is also compared with another low dimensional projection system based on PCA. In comparison with the original soft-counts, the proposed technique provides better results, reduces the problems due to sparse counts, and avoids the process of using pruning techniques when creating the lattices
Patrol team language identification system for DARPA RATS P1 evaluation
This paper describes the language identification (LID) system developed by the Patrol team for the first phase of the DARPA RATS (Robust Automatic Transcription of Speech) program, which seeks to advance state of the art detection capabilities on audio from highly degraded communication channels. We show that techniques originally developed for LID on telephone speech (e.g., for the NIST language recognition evaluations) remain effective on the noisy RATS data, provided that careful consideration is applied when designing the training and development sets. In addition, we show significant improvements from the use of Wiener filtering, neural network based and language dependent i-vector modeling, and fusion
The subspace Gaussian mixture model—A structured model for speech recognition
We describe a new approach to speech recognition, in which all Hidden Markov Model (HMM) states share the same Gaussian Mixture Model (GMM) structure with the same number of Gaussians in each state. The model is defined by vectors associated with each state with a dimension of, say, 50, together with a global mapping from this vector space to the space of parameters of the GMM. This model appears to give better results than a conventional model, and the extra structure offers many new opportunities for modeling innovations while maintaining compatibility with most standard techniques
Optimization of Gaussian Mixture Subspace Models and Related Scoring Algorithms in Speaker Verification
Tato práce pojednává o modelování v podprostoru parametrů směsí gaussovských rozložení pro rozpoznávání mluvčího. Práce se skládá ze tří částí. První část je věnována skórovacím metodám při použití sdružené faktorové analýzy k modelování mluvčího. Studované metody se liší převážně v tom, jak se vypořádávají s variabilitou kanálu testovacích nahrávek. Metody jsou prezentovány v souvislosti s obecnou formou funkce pravděpodobnosti pro sdruženou faktorovou analýzu a porovnány jak z hlediska přesnosti, tak i z hlediska rychlosti. Je zde prokázáno, že použití lineární aproximace pravděpodobnostní funkce dává výsledky srovnatelné se standardním vyhodnocením pravděpodobnosti při dramatickém zjednodušení matematického zápisu a tím i zvýšení rychlosti vyhodnocování. Druhá část pojednává o extrakci tzv. i-vektorů, tedy nízkodimenzionálních reprezentací nahrávek. Práce prezentuje dva přístupy ke zjednodušení extrakce. Motivací pro tuto část bylo jednak urychlení extrakce i-vektorů, jednak nasazení této úspěšné techniky na jednoduchá zařízení typu mobilní telefon, a také matematické zjednodušení umožněňující využití numerických optimalizačních metod pro diskriminativní trénování. Výsledky ukazují, že na dlouhých nahrávkách je zrychlení vykoupeno poklesem úspěšnosti rozpoznávání, avšak na krátkých nahrávkách, kde je úspěšnost rozpoznávání nízká, se rozdíly úspěšnosti stírají. Třetí část se zabývá diskriminativním trénováním v oblasti rozpoznávání mluvčího. Jsou zde shrnuty poznatky z předchozích prací zabývajících se touto problematikou. Kapitola navazuje na poznatky z předchozích dvou částí a pojednává o diskriminativním trénování parametrů extraktoru i-vektorů. Výsledky ukazují, že při klasickém trénování extraktoru a následném diskriminatviním přetrénování tyto metody zvyšují úspěšnost
Optimization of Gaussian Mixture Subspace Models and Related Scoring Algorithms in Speaker Verification
Tato práce pojednává o modelování v podprostoru parametrů směsí gaussovských rozložení pro rozpoznávání mluvčího. Práce se skládá ze tří částí. První část je věnována skórovacím metodám při použití sdružené faktorové analýzy k modelování mluvčího. Studované metody se liší převážně v tom, jak se vypořádávají s variabilitou kanálu testovacích nahrávek. Metody jsou prezentovány v souvislosti s obecnou formou funkce pravděpodobnosti pro sdruženou faktorovou analýzu a porovnány jak z hlediska přesnosti, tak i z hlediska rychlosti. Je zde prokázáno, že použití lineární aproximace pravděpodobnostní funkce dává výsledky srovnatelné se standardním vyhodnocením pravděpodobnosti při dramatickém zjednodušení matematického zápisu a tím i zvýšení rychlosti vyhodnocování. Druhá část pojednává o extrakci tzv. i-vektorů, tedy nízkodimenzionálních reprezentací nahrávek. Práce prezentuje dva přístupy ke zjednodušení extrakce. Motivací pro tuto část bylo jednak urychlení extrakce i-vektorů, jednak nasazení této úspěšné techniky na jednoduchá zařízení typu mobilní telefon, a také matematické zjednodušení umožněňující využití numerických optimalizačních metod pro diskriminativní trénování. Výsledky ukazují, že na dlouhých nahrávkách je zrychlení vykoupeno poklesem úspěšnosti rozpoznávání, avšak na krátkých nahrávkách, kde je úspěšnost rozpoznávání nízká, se rozdíly úspěšnosti stírají. Třetí část se zabývá diskriminativním trénováním v oblasti rozpoznávání mluvčího. Jsou zde shrnuty poznatky z předchozích prací zabývajících se touto problematikou. Kapitola navazuje na poznatky z předchozích dvou částí a pojednává o diskriminativním trénování parametrů extraktoru i-vektorů. Výsledky ukazují, že při klasickém trénování extraktoru a následném diskriminatviním přetrénování tyto metody zvyšují úspěšnost.This thesis deals with Gaussian Mixture Subspace Modeling in automatic speaker recognition. The thesis consists of three parts. In the first part, Joint Factor Analysis (JFA) scoring methods are studied. The methods differ mainly in how they deal with the channel of the tested utterance. The general JFA likelihood function is investigated and the methods are compared both in terms of accuracy and speed. It was found that linear approximation of the log-likelihood function gives comparable results to the full log-likelihood evaluation while simplyfing the formula and dramatically reducing the computation speed. In the second part, i-vector extraction is studied and two simplification methods are proposed. The motivation for this part was to allow for using the state-of-the-art technique on small scale devices and to setup a simple discriminative-training system. It is shown that, for long utterances, while sacrificing the accuracy, we can get very fast and compact i-vector systems. On a short-utterance(5-second) task, the results of the simplified systems are comparable to the full i-vector extraction. The third part deals with discriminative training in automatic speaker recognition. Previous work in the field is summarized and---based on the knowledge from the earlier chapters of this work---discriminative training of the i-vector extractor parameters is proposed. It is shown that discriminative re-training of the i-vector extractor can improve the system if the initial estimation is computed using the generative approach.