170 research outputs found

    Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing

    Get PDF
    Many analyses have examined subnucleolar structures in eukaryotic cells, but the relationship between morphological structures, pre-rRNA processing, and ribosomal particle assembly has remained unclear. Using a visual assay for export of the 60S ribosomal subunit, we isolated a ts-lethal mutation, rix9-1, which causes nucleolar accumulation of an Rpl25p-eGFP reporter construct. The mutation results in a single amino acid substitution (F(176)S) in Rlp7p, an essential nucleolar protein related to ribosomal protein Rpl7p. The rix9-1 (rlp7-1) mutation blocks the late pre-RNA cleavage at site C(2) in ITS2, which separates the precursors to the 5.8S and 25S rRNAs. Consistent with this, synthesis of the mature 5.8S and 25S rRNAs was blocked in the rlp7-1 strain at nonpermissive temperature, whereas 18S rRNA synthesis continued. Moreover, pre-rRNA containing ITS2 accumulates in the nucleolus of rix9-1 cells as revealed by in situ hybridization. Finally, tagged Rlp7p was shown to associate with a pre-60S particle, and fluorescence microscopy and immuno-EM localized Rlp7p to a subregion of the nucleolus, which could be the granular component (GC). All together, these data suggest that pre-rRNA cleavage at site C(2) specifically requires Rlp7p and occurs within pre-60S particles located in the GC region of the nucleolus

    ROSAT observations of X-ray emission from planetary nebulae

    Full text link
    We have searched the entire ROSAT archive for useful observations to study X-ray emission from Galactic planetary nebulae (PNs). The search yields a sample of 63 PNs, which we call the ROSAT PN sample. About 20-25% of this sample show X-ray emission; these include 13 definite detections and three possible detections (at a 2-sigma level). All X-ray sources in these PNs are concentrated near the central stars. Only A 30, BD+30 3639, and NGC 6543 are marginally resolved by the ROSAT instruments. Three types of X-ray spectra are seen in PNs. Type 1 consists of only soft X-ray emission (<0.5 keV), peaks at 0.1-0.2 keV, and can be fitted by blackbody models at temperatures 1-2 10^5 K. Type 2 consists of harder X-ray emission, peaks at >0.5 keV, and can be fitted by thin plasma emission models at temperatures of a few 10^6 K. Type 3 is a composite of a bright Type 1 component and a fainter Type 2 component. Unresolved soft sources with Type 1 spectra or the soft component of Type 3 spectra are most likely photospheric emission from the hot central stars. Absorption cross sections are large for these soft-energy photons; therefore, only large, tenuous, evolved PNs with hot central stars and small absorption column densities have been detected. The origin of hard X-ray emission from PNs is uncertain. PNs with Type 2 spectra are small, dense, young nebulae with relatively cool (<<10^5 K) central stars, while PNs with Type 3 X-ray spectra are large, tenuous, evolved nebulae with hot central stars. The hard X-ray luminosities are also different between these two types of PNs, indicating perhaps different origins of their hard X-ray emission. Future Chandra and XMM observations with high spatial and spectral resolution will help to understand the origin of hard X-ray emission from PNs.Comment: To be published in The Astrophysical Journal Supplement Series. 21 pages, 7 figures, 5 table

    Nuclear Spin-Lattice Relaxation in One-Dimensional Heisenberg Ferrimagnets: Three-Magnon versus Raman Processes

    Full text link
    Nuclear spin-lattice relaxation in one-dimensional Heisenberg ferrimagnets is studied by means of a modified spin-wave theory. We consider the second-order process, where a nuclear spin flip induces virtual spin waves which are then scattered thermally via the four-magnon exchange interaction, as well as the first-order process, where a nuclear spin directly interacts with spin waves via the hyperfine interaction. We point out a possibility of the three-magnon relaxation process predominating over the Raman one and suggest model experiments.Comment: to be published in J. Phys. Soc. Jpn. 73, No. 6 (2004

    Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven fenton reaction

    Get PDF
    AbstractWe have identified key components of the extracellular oxidative system that the brown rot fungus Gloeophyllum trabeum uses to degrade a recalcitrant polymer, polyethylene glycol, via hydrogen abstraction reactions. G. trabeum produced an extracellular metabolite, 2,5-dimethoxy-1,4-benzoquinone, and reduced it to 2,5-dimethoxyhydroquinone. In the presence of 2,5-dimethoxy-1,4-benzoquinone, the fungus also reduced extracellular Fe3+ to Fe2+ and produced extracellular H2O2. Fe3+ reduction and H2O2 formation both resulted from a direct, non-enzymatic reaction between 2,5-dimethoxyhydroquinone and Fe3+. polyethylene glycol depolymerization by G. trabeum required both 2,5-dimethoxy-1,4-benzoquinone and Fe3+ and was completely inhibited by catalase. These results provide evidence that G. trabeum uses a hydroquinone-driven Fenton reaction to cleave polyethylene glycol. We propose that similar reactions account for the ability of G. trabeum to attack lignocellulose

    Collisional kinetics of non-uniform electric field, low-pressure, direct-current discharges in H2_{2}

    Full text link
    A model of the collisional kinetics of energetic hydrogen atoms, molecules, and ions in pure H2_2 discharges is used to predict Hα_\alpha emission profiles and spatial distributions of emission from the cathode regions of low-pressure, weakly-ionized discharges for comparison with a wide variety of experiments. Positive and negative ion energy distributions are also predicted. The model developed for spatially uniform electric fields and current densities less than 10310^{-3} A/m2^2 is extended to non-uniform electric fields, current densities of 10310^{3} A/m2^2, and electric field to gas density ratios E/N=1.3E/N = 1.3 MTd at 0.002 to 5 Torr pressure. (1 Td = 102110^{-21} V m2^2 and 1 Torr = 133 Pa) The observed far-wing Doppler broadening and spatial distribution of the Hα_\alpha emission is consistent with reactions among H+^+, H2+_2^+, H3+_3^+, and HH^-H ions, fast H atoms, and fast H2_2 molecules, and with reflection, excitation, and attachment to fast H atoms at surfaces. The Hα_\alpha excitation and H^- formation occur principally by collisions of fast H, fast H2_2, and H+^+ with H2_2. Simplifications include using a one-dimensional geometry, a multi-beam transport model, and the average cathode-fall electric field. The Hα_\alpha emission is linear with current density over eight orders of magnitude. The calculated ion energy distributions agree satisfactorily with experiment for H2+_2^+ and H3+_3^+, but are only in qualitative agreement for H+^+ and H^-. The experiments successfully modeled range from short-gap, parallel-plane glow discharges to beam-like, electrostatic-confinement discharges.Comment: Submitted to Plasmas Sources Science and Technology 8/18/201

    Existence of the magnetization plateau in a class of exactly solvable Ising-Heisenberg chains

    Full text link
    The mapping transformation technique is applied to obtain exact results for the spin-1/2 and spin-S (S=1/2,1) Ising-Heisenberg antiferromagnetic chain in the presence of an external magnetic field. Within this scheme, a field-induced first-order metamagnetic transition resulting in multiplateau magnetization curves, is investigated in detail. It is found that the scenario of the plateau formation depends fundamentally on the ratio between Ising and Heisenbrg interaction constants, as well as on the anisotropy strength of the XXZ Heisenberg interaction.Comment: 16 pages, 10 figures, submitted to J. Phys: Condens. Matte

    Analysis of two human pre-ribosomal factors, bystin and hTsr1, highlights differences in evolution of ribosome biogenesis between yeast and mammals

    Get PDF
    Recent studies reveal that maturation of the 40S ribosomal subunit precursors in mammals includes an additional step during processing of the internal transcribed spacer 1 (ITS1), when compared with yeast Saccharomyces cerevisiae, even though the protein content of the pre-40S particle appears to be the same. Here, we examine by depletion with siRNA treatment the function of human orthologs of two essential yeast pre-ribosomal factors, hEnp1/bystin and hTsr1. Like their yeast orthologs, bystin is required for efficient cleavage of the ITS1 and further processing of this domain within the pre-40S particles, whereas hTsr1 is necessary for the final maturation steps. However, bystin depletion leads to accumulation of an unusual 18S rRNA precursor, revealing a new step in ITS1 processing that potentially involves an exonuclease. In addition, pre-40S particles lacking hTsr1 are partially retained in the nucleus, whereas depletion of Tsr1p in yeast results in strong cytoplasmic accumulation of pre-40S particles. These data indicate that ITS1 processing in human cells may be more complex than currently envisioned and that coordination between maturation and nuclear export of pre-40S particles has evolved differently in yeast and mammalian cells

    Analytical Bethe Ansatz for closed and open gl(n)-spin chains in any representation

    Get PDF
    We present an "algebraic treatment" of the analytical Bethe Ansatz. For this purpose, we introduce abstract monodromy and transfer matrices which provide an algebraic framework for the analytical Bethe Ansatz. It allows us to deal with a generic gl(n)-spin chain possessing on each site an arbitrary gl(n)-representation. For open spin chains, we use the classification of the reflection matrices to treat all the diagonal boundary cases. As a result, we obtain the Bethe equations in their full generality for closed and open spin chains. The classifications of finite dimensional irreducible representations for the Yangian (closed spin chains) and for the reflection algebras (open spin chains) are directly linked to the calculation of the transfer matrix eigenvalues. As examples, we recover the usual closed and open spin chains, we treat the alternating spin chains and the closed spin chain with impurity
    corecore