211 research outputs found

    Consensus Statement Immunonutrition and Exercise.

    Get PDF
    In this consensus statement on immunonutrition and exercise, a panel of knowledgeable contributors from across the globe provides a consensus of updated science, including the background, the aspects for which a consensus actually exists, the controversies and, when possible, suggested directions for future research

    The influence of exercise training status on antigen-stimulated IL-10 production in whole blood culture and numbers of circulating regulatory T cells

    Get PDF
    The final publication is available at springerlink.com.Highly trained athletes are associated with high resting antigen-stimulated whole blood culture interleukin (IL)-10 production. The purpose of the present study was to examine the effects of training status on resting circulating T regulatory (T) cell counts and antigen-stimulated IL-10 production and the effect of acute bout of exercise on the T response. Forty participants volunteered to participate and were assigned to one of the four groups: sedentary (SED), recreationally active (REC), sprint-trained athletes and endurance-trained athletes (END). From the resting blood sample, CD4CD25CD127 T cells and in vitro antigen-stimulated IL-10 production were assessed. Ten REC subjects performed 60 min cycling at 70 % of maximal oxygen uptake and blood samples for T analysis were collected post- and 1 h post-exercise. IL-10 production was greater in END compared with the other groups (P < 0.05). END had a higher T percentage of total lymphocyte count compared with SED (P < 0.05). A smaller proportion of T CD4 cells were observed in SED compared with all other groups (P < 0.05). IL-10 production significantly correlated with the proportion of T within the total lymphocyte population (r = 0.51, P = 0.001). No effect of acute exercise was evident for T cell counts in the REC subjects (P > 0.05). Our results demonstrate that high training loads in END are associated with greater resting IL-10 production and T cell count and suggest a possible mechanism for depression of immunity commonly reported in athletes engaged in high training loads. © 2013 Springer-Verlag Berlin Heidelberg

    Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effect of acute L-alanyl-L-glutamine (AG; Sustamine™) ingestion on performance changes and markers of fluid regulation, immune, inflammatory, oxidative stress, and recovery was examined in response to exhaustive endurance exercise, during and in the absence of dehydration.</p> <p>Methods</p> <p>Ten physically active males (20.8 ± 0.6 y; 176.8 ± 7.2 cm; 77.4 ± 10.5 kg; 12.3 ± 4.6% body fat) volunteered to participate in this study. During the first visit (T1) subjects reported to the laboratory in a euhydrated state to provide a baseline (BL) blood draw and perform a maximal exercise test. In the four subsequent randomly ordered trials, subjects dehydrated to -2.5% of their baseline body mass. For T2, subjects achieved their goal weight and were not rehydrated. During T3 - T5, subjects reached their goal weight and then rehydrated to 1.5% of their baseline body mass by drinking either water (T3) or two different doses (T4 and T5) of the AG supplement (0.05 g·kg<sup>-1 </sup>and 0.2 g·kg<sup>-1</sup>, respectively). Subjects then exercised at a workload that elicited 75% of their VO<sub>2 </sub>max on a cycle ergometer. During T2 - T5 blood draws occurred once goal body mass was achieved (DHY), immediately prior to the exercise stress (RHY), and immediately following the exercise protocol (IP). Resting 24 hour (24P) blood samples were also obtained. Blood samples were analyzed for glutamine, potassium, sodium, aldosterone, arginine vasopressin (AVP), C-reactive protein (CRP), interleukin-6 (IL-6), malondialdehyde (MDA), testosterone, cortisol, ACTH, growth hormone and creatine kinase. Statistical evaluation of performance, hormonal and biochemical changes was accomplished using a repeated measures analysis of variance.</p> <p>Results</p> <p>Glutamine concentrations for T5 were significantly higher at RHY and IP than T2 - T4. When examining performance changes (difference between T2 - T5 and T1), significantly greater times to exhaustion occurred during T4 (130.2 ± 340.2 sec) and T5 (157.4 ± 263.1 sec) compared to T2 (455.6 ± 245.0 sec). Plasma sodium concentrations were greater (p < 0.05) at RHY and IP for T2 than all other trials. Aldosterone concentrations at RHY and IP were significantly lower than that at BL and DHY. AVP was significantly elevated at DHY, RHY and IP compared to BL measures. No significant differences were observed between trials in CRP, IL-6, MDA, or in any of the other hormonal or biochemical measures.</p> <p>Conclusion</p> <p>Results demonstrate that AG supplementation provided a significant ergogenic benefit by increasing time to exhaustion during a mild hydration stress. This ergogenic effect was likely mediated by an enhanced fluid and electrolyte uptake.</p

    Analytical Processing of Binary Mixture Information by Olfactory Bulb Glomeruli

    Get PDF
    Odors are rarely composed of a single compound, but rather contain a large and complex variety of chemical components. Often, these mixtures are perceived as having unique qualities that can be quite different than the combination of their components. In many cases, a majority of the components of a mixture cannot be individually identified. This synthetic processing of odor information suggests that individual component representations of the mixture must interact somewhere along the olfactory pathway. The anatomical nature of sensory neuron input into segregated glomeruli with the bulb suggests that initial input of odor information into the bulb is analytic. However, a large network of interneurons within the olfactory bulb could allow for mixture interactions via mechanisms such as lateral inhibition. Currently in mammals, it is unclear if postsynaptic mitral/tufted cell glomerular mixture responses reflect the analytical mixture input, or provide the initial basis for synthetic processing with the olfactory system. To address this, olfactory bulb glomerular binary mixture representations were compared to representations of each component using transgenic mice expressing the calcium indicator G-CaMP2 in olfactory bulb mitral/tufted cells. Overall, dorsal surface mixture representations showed little mixture interaction and often appeared as a simple combination of the component representations. Based on this, it is concluded that dorsal surface glomerular mixture representations remain largely analytical with nearly all component information preserved

    Protein and Overtraining: Potential Applications for Free-Living Athletes

    Get PDF
    Despite a more than adequate protein intake in the general population, athletes have special needs and situations that bring it to the forefront. Overtraining is one example. Hard-training athletes are different from sedentary persons from the sub-cellular to whole-organism level. Moreover, competitive, "free-living" (less-monitored) athletes often encounter negative energy balance, sub-optimal dietary variety, injuries, endocrine exacerbations and immune depression. These factors, coupled with "two-a-day" practices and in-season demands require that protein not be dismissed as automatically adequate or worse, deleterious to health. When applying research to practice settings, one should consider methodological aspects such as population specificity and control variables such as energy balance. This review will address data pertinent to the topic of athletic protein needs, particularly from a standpoint of overtraining and soft tissue recovery. Research-driven strategies for adjusting nutrition and exercise assessments will be offered for consideration. Potentially helpful nutrition interventions for preventing and treating training complications will also be presented

    Exercise and functional foods

    Get PDF
    Appropriate nutrition is an essential prerequisite for effective improvement of athletic performance, conditioning, recovery from fatigue after exercise, and avoidance of injury. Nutritional supplements containing carbohydrates, proteins, vitamins, and minerals have been widely used in various sporting fields to provide a boost to the recommended daily allowance. In addition, several natural food components have been found to show physiological effects, and some of them are considered to be useful for promoting exercise performance or for prevention of injury. However, these foods should only be used when there is clear scientific evidence and with understanding of the physiological changes caused by exercise. This article describes various "functional foods" that have been reported to be effective for improving exercise performance or health promotion, along with the relevant physiological changes that occur during exercise

    Automated High-Content Live Animal Drug Screening Using C. elegans Expressing the Aggregation Prone Serpin α1-antitrypsin Z

    Get PDF
    The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in α1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling α1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms
    corecore