30 research outputs found

    Comparative Analysis of Mycoplasma gallisepticum vlhA Promoters

    Get PDF
    Mycoplasma gallisepticum is an intracellular parasite affecting respiratory tract of poultry that belongs to class Mollicutes. M. gallisepticum features numerous variable lipoprotein hemagglutinin genes (vlhA) that play a role in immune escape. The vlhA promoters have a set of distinct properties in comparison to promoters of the other genes. The vlhA promoters carry a variable GAA repeats region at approximately 40 nts upstream of transcription start site. The promoters have been considered active only in the presence of exactly 12 GAA repeats. The mechanisms of vlhA expression regulation and GAA number variation are not described. Here we tried to understand these mechanisms using different computational methods. We conducted a comparative analysis among several M. gallisepticum strains. Nucleotide sequences analysis showed the presence of highly conserved regions flanking repeated trinucleotides that are not linked to GAA number variation. VlhA genes with 12 GAA repeats and their orthologs in 12 M. gallisepticum strains are more conserved than other vlhA genes and have narrower GAA number distribution. We conducted comparative analysis of physicochemical profiles of M. gallisepticum vlhA and sigma-70 promoters. Stress-induced duplex destabilization (SIDD) profiles showed that sigma-70 group is characterized by the common to prokaryotic promoters sharp maxima while vlhA promoters are hardly destabilized with the region between GAA repeats and transcription start site having zero opening probability. Electrostatic potential profiles of vlhA promoters indicate the presence of the distinct patterns that appear to govern initial stages of specific DNA-protein recognition. Open state dynamics profiles of vlhA demonstrate the pattern that might facilitate transcription bubble formation. Obtained data could be the basis for experimental identification of mechanisms of phase variation in M. gallisepticum

    Reconstruction of Transcription Control Networks in Mollicutes by High-Throughput Identification of Promoters

    Get PDF
    Bacteria of the class Mollicutes have significantly reduced genomes and gene expression control systems. They are also efficient pathogens that can colonize a broad range of hosts including plants and animals. Despite their simplicity, Mollicutes demonstrate complex transcriptional responses to various conditions, which contradicts their reduction in gene expression regulation mechanisms. We analyzed the conservation and distribution of transcription regulators across the 50 Mollicutes species. The majority of the transcription factors regulate transport and metabolism, and there are four transcription factors that demonstrate significant conservation across the analyzed bacteria. These factors include repressors of chaperone HrcA, cell cycle regulator MraZ and two regulators with unclear function from the WhiA and YebC/PmpR families. We then used three representative species of the major clades of Mollicutes (Acholeplasma laidlawii, Spiroplasma melliferum and Mycoplasma gallisepticum) to perform promoters mapping and activity quantitation. We revealed that Mollicutes evolved towards a promoter architecture simplification that correlates with a diminishing role of transcription regulation and an increase in transcriptional noise. Using the identified operons structure and a comparative genomics approach, we reconstructed the transcription control networks for these three species. The organization of the networks reflects the adaptation of bacteria to specific conditions and hosts

    BAC-BROWSER: The Tool for Visualization and Analysis of Prokaryotic Genomes

    Get PDF
    Prokaryotes are actively studied objects in the scope of genomic regulation. Microbiologists need special tools for complex analysis of data to study and identification of regulatory mechanism in bacteria and archaea.We developed a tool BAC-BROWSER, specifically for visualization and analysis of small prokaryotic genomes. BAC-BROWSER provides tools for different types of analysis to study a wide set of regulatory mechanisms of prokaryotes: -transcriptional regulation by transcription factors (TFs), analysis of TFs, their targets, and binding sites.-other regulatory motifs, promoters, terminators and ribosome binding sites-transcriptional regulation by variation of operon structure, alternative starts or ends of transcription.-non-coding RNAs, antisense RNAs-RNA secondary structure, riboswitches-GC content, GC skew, codon usageBAC-browser incorporated free programs accelerating the verification of obtained results: primer design and oligocalculator, vector visualization, the tool for synthetic gene construction. The program is designed for Windows operating system and freely available for download in http://smdb.rcpcm.org/tools/index.html

    Core Proteome of the Minimal Cell: Comparative Proteomics of Three Mollicute Species

    Get PDF
    Mollicutes (mycoplasmas) have been recognized as highly evolved prokaryotes with an extremely small genome size and very limited coding capacity. Thus, they may serve as a model of a ‘minimal cell’: a cell with the lowest possible number of genes yet capable of autonomous self-replication. We present the results of a comparative analysis of proteomes of three mycoplasma species: A. laidlawii, M. gallisepticum, and M. mobile. The core proteome components found in the three mycoplasma species are involved in fundamental cellular processes which are necessary for the free living of cells. They include replication, transcription, translation, and minimal metabolism. The members of the proteome core seem to be tightly interconnected with a number of interactions forming core interactome whether or not additional species-specific proteins are located on the periphery. We also obtained a genome core of the respective organisms and compared it with the proteome core. It was found that the genome core encodes 73 more proteins than the proteome core. Apart of proteins which may not be identified due to technical limitations, there are 24 proteins that seem to not be expressed under the optimal conditions

    Transcription profiling data set of different states of Mycoplasma gallisepticum

    No full text
    Mycoplasma gallisepticum belongs to class Mollicutes and causes chronic respiratory disease in birds. It has a reduced genome, lack of cell wall and many metabolic pathways, and also easy to culture and non-pathogenic to humans. Aforementioned made it is a convenient model for studying of systems biology of minimal cell. Studying the transcriptomic level of M. gallisepticum is interesting for both understanding of common principles of transcription regulation of minimal cell and response to definite influence for pathogen bacteria. For rapid investigation of gene expression we developed microarray design including 3366 probes for 678 genes. They included 665 protein coding sequences and 13 antisense RNAs from 816 genes and 17 ncRNAs present in Mycoplasma gallisepticum. The study was performed on Agilent one-color microarray with custom design and random-T7 polymerase primer for cDNA synthesis. Here we present the data for transcription profiling of M. gallisepticum under different types of exposures: genetic knock-out mutants, cell culture exposed to sublethal concentrations of antibiotics and well-characterized heat stress effect. Mutants have transposon insertion to hypothetical membrane protein, lactate dehydrogenase, helicase with unknown function, 1-deoxy-d-xylulose 5-phosphate reductoisomerase or potential sigma factor. For inhibition of important cell systems, treatment with carbonyl cyanide m-chlorophenylhydrazone (CCCP), novobiocin or tetracycline were chosen. Data are available via NCBI Gene Expression Omnibus (GEO) with the accession number GSE85777 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85777

    Gene Silencing through CRISPR Interference in Mycoplasmas

    No full text
    Mycoplasmas are pathogenic, genome-reduced bacteria. The development of such fields of science as system and synthetic biology is closely associated with them. Despite intensive research of different representatives of this genus, genetic manipulations remain challenging in mycoplasmas. Here we demonstrate a single-plasmid transposon-based CRISPRi system for the repression of gene expression in mycoplasmas. We show that selected expression determinants provide a level of dCas9 that does not lead to a significant slow-down of mycoplasma growth. For the first time we describe the proteomic response of genome-reduced bacteria to the expression of exogenous dcas9. The functionality of the resulting vector is confirmed by targeting the three genes coding transcription factors-fur, essential spxA, whiA, and histone-like protein hup1 in Mycoplasma gallisepticum. As a result, the expression level of each gene was decreased tenfold and influenced the mRNA level of predicted targets of transcription factors. To illustrate the versatility of this vector, we performed a knockdown of metabolic genes in a representative member of another cluster of the Mycoplasma genus-Mycoplasma hominis. The developed CRISPRi system is a powerful tool to discover the functioning of genes that are essential, decipher regulatory networks and that can help to identify novel drug targets to control Mycoplasma infections

    Metabolomic Analysis of Three Mollicute Species

    No full text
    <div><p>We present a systematic study of three bacterial species that belong to the class Mollicutes, the smallest and simplest bacteria, <i>Spiroplasma melliferum</i>, <i>Mycoplasma gallisepticum</i>, and <i>Acholeplasma laidlawii</i>. To understand the difference in the basic principles of metabolism regulation and adaptation to environmental conditions in the three species, we analyzed the metabolome of these bacteria. Metabolic pathways were reconstructed using the proteogenomic annotation data provided by our lab. The results of metabolome, proteome and genome profiling suggest a fundamental difference in the adaptation of the three closely related Mollicute species to stress conditions. As the transaldolase is not annotated in Mollicutes, we propose variants of the pentose phosphate pathway catalyzed by annotated enzymes for three species. For metabolite detection we employed high performance liquid chromatography coupled with mass spectrometry. We used liquid chromatography method - hydrophilic interaction chromatography with silica column - as it effectively separates highly polar cellular metabolites prior to their detection by mass spectrometer.</p></div

    Overlap of the detected metabolites for three Mollicute species.

    No full text
    <p>Yellow circle represents metabolites of <i>M. gallisepticum</i>, violet circle represents metabolites of <i>S. melliferum</i>, and green circle represents metabolites of <i>A. laidlawii</i>. The list of identified metabolites of <i>S. melliferum</i>, <i>M. gallisepticum</i> and <i>A. laidlawii</i> is presented in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0089312#pone-0089312-t001" target="_blank">Table 1</a>.</p
    corecore