4,092 research outputs found
Quantum Logic and the Histories Approach to Quantum Theory
An extended analysis is made of the Gell-Mann and Hartle axioms for a
generalised `histories' approach to quantum theory. Emphasis is placed on
finding equivalents of the lattice structure that is employed in standard
quantum logic. Particular attention is given to `quasi-temporal' theories in
which the notion of time-evolution is less rigid than in conventional
Hamiltonian physics; theories of this type are expected to arise naturally in
the context of quantum gravity and quantum field theory in a curved space-time.
The quasi-temporal structure is coded in a partial semi-group of `temporal
supports' that underpins the lattice of history propositions. Non-trivial
examples include quantum field theory on a non globally-hyperbolic spacetime,
and a simple cobordism approach to a theory of quantum topology.
It is shown how the set of history propositions in standard quantum theory
can be realised in such a way that each history proposition is represented by a
genuine projection operator. This provides valuable insight into the possible
lattice structure in general history theories, and also provides a number of
potential models for theories of this type.Comment: TP/92-93/39 36 pages + one page of diagrams (I could email Apple
laser printer postscript file for anyone who is especially keen
Simulating Quantum Mechanics by Non-Contextual Hidden Variables
No physical measurement can be performed with infinite precision. This leaves
a loophole in the standard no-go arguments against non-contextual hidden
variables. All such arguments rely on choosing special sets of
quantum-mechanical observables with measurement outcomes that cannot be
simulated non-contextually. As a consequence, these arguments do not exclude
the hypothesis that the class of physical measurements in fact corresponds to a
dense subset of all theoretically possible measurements with outcomes and
quantum probabilities that \emph{can} be recovered from a non-contextual hidden
variable model. We show here by explicit construction that there are indeed
such non-contextual hidden variable models, both for projection valued and
positive operator valued measurements.Comment: 15 pages. Journal version. Only minor typo corrections from last
versio
Covariant quantum measurements may not be optimal
Quantum particles, such as spins, can be used for communicating spatial
directions to observers who share no common coordinate frame. We show that if
the emitter's signals are the orbit of a group, then the optimal detection
method may not be a covariant measurement (contrary to widespread belief). It
may be advantageous for the receiver to use a different group and an indirect
estimation method: first, an ordinary measurement supplies redundant numerical
parameters; the latter are then used for a nonlinear optimal identification of
the signal.Comment: minor corrections, to appear in J. Mod. Opt. (proc. of Gdansk conf.
Multispectral system analysis through modeling and simulation
The design and development of multispectral remote sensor systems and associated information extraction techniques should be optimized under the physical and economic constraints encountered and yet be effective over a wide range of scene and environmental conditions. Direct measurement of the full range of conditions to be encountered can be difficult, time consuming, and costly. Simulation of multispectral data by modeling scene, atmosphere, sensor, and data classifier characteristics is set forth as a viable alternative, particularly when coupled with limited sets of empirical measurements. A multispectral system modeling capability is described. Use of the model is illustrated for several applications - interpretation of remotely sensed data from agricultural and forest scenes, evaluating atmospheric effects in LANDSAT data, examining system design and operational configuration, and development of information extraction techniques
Atmospheric modeling related to Thematic Mapper scan geometry
A simulation study was carried out to characterize atmospheric effects in LANDSAT-D Thematic Mapper data. In particular, the objective was to determine if any differences would result from using a linear vs. a conical scanning geometry. Insight also was gained about the overall effect of the atmosphere on Thematic Mapper signals, together with the effects of time of day. An added analysis was made of the geometric potential for direct specular reflections (sun glint). The ERIM multispectral system simulation model was used to compute inband Thematic Mapper radiances, taking into account sensor, atmospheric, and surface characteristics. Separate analyses were carried out for the thermal band and seven bands defined in the reflective spectral region. Reflective-region radiances were computed for 40 deg N, 0 deg, and 40 deg S latitudes; June, Mar., and Dec. days; and 9:30 and 11:00 AM solar times for both linear and conical scan modes. Also, accurate simulations of solar and viewing geometries throughout Thematic Mapper orbits were made. It is shown that the atmosphere plays an important role in determining Thematic Mapper radiances, with atmospheric path radiance being the major component of total radiances for short wavelengths and decreasing in importance as wavelength increases. Path radiance is shown to depend heavily on the direct radiation scattering angle and on haze content. Scan-angle-dependent variations were shown to be substantial, especially for the short-wavelength bands
Wheat signature modeling and analysis for improved training statistics: Supplement. Simulated LANDSAT wheat radiances and radiance components
Simulated scanner system data values generated in support of LACIE (Large Area Crop Inventory Experiment) research and development efforts are presented. Synthetic inband (LANDSAT) wheat radiances and radiance components were computed and are presented for various wheat canopy and atmospheric conditions and scanner view geometries. Values include: (1) inband bidirectional reflectances for seven stages of wheat crop growth; (2) inband atmospheric features; and (3) inband radiances corresponding to the various combinations of wheat canopy and atmospheric conditions. Analyses of these data values are presented in the main report
Negativity and contextuality are equivalent notions of nonclassicality
Two notions of nonclassicality that have been investigated intensively are:
(i) negativity, that is, the need to posit negative values when representing
quantum states by quasiprobability distributions such as the Wigner
representation, and (ii) contextuality, that is, the impossibility of a
noncontextual hidden variable model of quantum theory (also known as the
Bell-Kochen-Specker theorem). Although both of these notions were meant to
characterize the conditions under which a classical explanation cannot be
provided, we demonstrate that they prove inadequate to the task and we argue
for a particular way of generalizing and revising them. With the refined
version of each in hand, it becomes apparent that they are in fact one and the
same. We also demonstrate the impossibility of noncontextuality or
nonnegativity in quantum theory with a novel proof that is symmetric in its
treatment of measurements and preparations.Comment: 5 pages, published version (modulo some supplementary material
Probabilities from envariance?
Zurek claims to have derived Born's rule noncircularly in the context of an
ontological no-collapse interpretation of quantum states, without any "deus ex
machina imposition of the symptoms of classicality." After a brief review of
Zurek's derivation it is argued that this claim is exaggerated if not wholly
unjustified. In order to demonstrate that Born's rule arises noncircularly from
deterministically evolving quantum states, it is not sufficient to assume that
quantum states are somehow associated with probabilities and then prove that
these probabilities are given by Born's rule. One has to show how irreducible
probabilities can arise in the context of an ontological no-collapse
interpretation of quantum states. It is argued that the reason why all attempts
to do this have so far failed is that quantum states are fundamentally
algorithms for computing correlations between possible measurement outcomes,
rather than evolving ontological states.Comment: To appear in IJQI; 9 pages, LaTe
A Bayesian Analogue of Gleason's Theorem
We introduce a novel notion of probability within quantum history theories
and give a Gleasonesque proof for these assignments. This involves introducing
a tentative novel axiom of probability. We also discuss how we are to interpret
these generalised probabilities as partially ordered notions of preference and
we introduce a tentative generalised notion of Shannon entropy. A Bayesian
approach to probability theory is adopted throughout, thus the axioms we use
will be minimal criteria of rationality rather than ad hoc mathematical axioms.Comment: 14 pages, v2: minor stylistic changes, v3: changes made in-line with
to-be-published versio
- …