2 research outputs found

    Skeletal Muscle Vascular Control during Exercise: Impact of Nitrite Infusion During Nitric Oxide Synthase Inhibition in Healthy Rats

    Get PDF
    This is the author accepted manuscript. The final version is available from Sage via the DOI in this recordThe nitric oxide synthase (NOS)-independent pathway of nitric oxide (NO) production in which nitrite (NO2 (-)) is reduced to NO may have therapeutic applications for those with cardiovascular diseases in which the NOS pathway is downregulated. We tested the hypothesis that NO2 (-) infusion would reduce mean arterial pressure (MAP) and increase skeletal muscle blood flow (BF) and vascular conductance (VC) during exercise in the face of NOS blockade via L-NAME. Following infusion of L-NAME (10 mg kg(-1), L-NAME), male Sprague-Dawley rats (3-6 months, n = 8) exercised without N(G)-nitro-L arginine methyl ester (L-NAME) and after infusion of sodium NO2 (-) (7 mg kg(-1); L-NAME + NO2 (-)). MAP and hindlimb skeletal muscle BF (radiolabeled microsphere infusions) were measured during submaximal treadmill running (20 m min(-1), 5% grade). Across group comparisons were made with a published control data set (n = 11). Relative to L-NAME, NO2 (-) infusion significantly reduced MAP (P < 0.03). The lower MAP in L-NAME+NO2 (-) was not different from healthy control animals (control: 137 ± 3 L-NAME: 157 ± 7, L-NAME + NO2 (-): 136 ± 5 mm Hg). Also, NO2 (-) infusion significantly increased VC when compared to L-NAME (P < 0.03), ultimately negating any significant differences from control animals (control: 0.78 ± 0.05, L-NAME: 0.57 ± 0.03, L-NAME + NO2 (-); 0.69 ± 0.04 mL min(-1) 100 g(-1) mm Hg(-1)) with no apparent fiber-type preferential effect. Overall, hindlimb BF was decreased significantly by L-NAME; however, in L-NAME + NO2 (-), BF improved to a level not significantly different from healthy controls (control: 108 ± 8, L-NAME: 88 ± 3, L-NAME + NO2 (-): 94 ± 6 mL min(-1) 100 g(-1), P = 0.38 L-NAME vs L-NAME + NO2 (-)). Individuals with diseases that impair NOS activity, and thus vascular function, may benefit from a NO2 (-)-based therapy in which NO bioavailability is elevated in an NOS-independent manner.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: These experiments were funded by a Kansas State University SMILE award to TIM, and American Heart Association Midwest Affiliate (10GRNT4350011) and NIH (HL-108328) awards to DCP
    corecore