261 research outputs found
Controlling the Spin Polarization of the Electron Current in a Semimagnetic Resonant-Tunneling Diode
The spin filtering effect of the electron current in a double-barrier
resonant-tunneling diode (RTD) consisting of ZnMnSe semimagnetic layers has
been studied theoretically. The influence of the distribution of the magnesium
ions on the coefficient of the spin polarization of the electron current has
been investigated. The dependence of the spin filtering degree of the electron
current on the external magnetic field and the bias voltage has been obtained.
The effect of the total spin polarization of the electron current has been
predicted. This effect is characterized by total suppression of the spin-up
component of electron current, that takes place when the Fermi level coincides
with the lowest Landau level for spin-up electrons in the RTD semimagnetic
emitter
Spin relaxation of two-dimensional holes in strained asymmetric SiGe quantum wells
We analyze spin splitting of the two-dimensional hole spectrum in strained
asymmetric SiGe quantum wells (QWs). Based on the Luttinger Hamiltonian, we
obtain expressions for the spin-splitting parameters up to the third order in
the in-plane hole wavevector. The biaxial strain of SiGe QWs is found to be a
key parameter that controls spin splitting. Application to SiGe field-effect
transistor structures indicates that typical spin splitting at room temperature
varies from a few tenth of meV in the case of Si QW channels to several meV for
the Ge counterparts, and can be modified efficiently by gate-controlled
variation of the perpendicular confining electric field. The analysis also
shows that for sufficiently asymmetric QWs, spin relaxation is due mainly to
the spin-splitting related D'yakonov-Perel' mechanism. In strained Si QWs, our
estimation shows that the hole spin relaxation time can be on the order of a
hundred picoseconds at room temperature, suggesting that such structures are
suitable for p-type spin transistor applications as well
Low-temperature heat transfer in nanowires
The new regime of low-temperature heat transfer in suspended nanowires is
predicted. It takes place when (i) only ``acoustic'' phonon modes of the wire
are thermally populated and (ii) phonons are subject to the effective elastic
scattering. Qualitatively, the main peculiarities of heat transfer originate
due to appearance of the flexural modes with high density of states in the wire
phonon spectrum. They give rise to the temperature dependence of the
wire thermal conductance. The experimental situations where the new regime is
likely to be detected are discussed.Comment: RevTex file, 1 PS figur
On the low-temperature lattice thermal transport in nanowires
We propose a theory of low temperature thermal transport in nano-wires in the
regime where a competition between phonon and flexural modes governs the
relaxation processes. Starting with the standard kinetic equations for two
different types of quasiparticles we derive a general expression for the
coefficient of thermal conductivity. The underlying physics of thermal
conductance is completely determined by the corresponding relaxation times,
which can be calculated directly for any dispersion of quasiparticles depending
on the size of a system. We show that if the considered relaxation mechanism is
dominant, then at small wire diameters the temperature dependence of thermal
conductivity experiences a crossover from to -dependence.
Quantitative analysis shows reasonable agreement with resent experimental
results.Comment: 12 pages, 3 eps figure
Airfall on Comet 67P/Churyumov-Gerasimenko
We here study the transfer process of material from one hemisphere to the
other (deposition of airfall material) on an active comet nucleus, specifically
67P/Churyumov-Gerasimenko. Our goals are to: 1) quantify the thickness of the
airfall debris layers and how it depends on the location of the target area, 2)
determine the amount of and ice that are lost
from icy dust assemblages of different sizes during transfer through the coma,
and 3) estimate the relative amount of vapor loss in airfall material after
deposition in order to understand what locations are expected to be more active
than others on the following perihelion approach.
We use various numerical simulations, that include orbit dynamics,
thermophysics of the nucleus and of individual coma aggregates, coma gas
kinetics and hydrodynamics, as well as dust dynamics due to gas drag, to
address these questions. We find that the thickness of accumulated airfall
material varies substantially with location, and typically is of the order
-. The airfall material preserves substantial amounts of
water ice even in relatively small (cm-sized) coma aggregates after a rather
long () residence in the coma. However, is lost
within a couple of hours even in relatively large (dm-sized) aggregates, and is
not expected to be an important component in airfall deposits. We introduce
reachability and survivability indices to measure the relative capacity of
different regions to simultaneously collect airfall and to preserve its water
ice until the next perihelion passage, thereby grading their potential of
contributing to comet activity during the next perihelion passage.Comment: 65 pages, 11 figures. Published manuscrip
Recommended from our members
Overview of the results of the organics PET Study of the cometary samples returned from comet Wild 2 by the Stardust mission
This presenation will provide an overview of the efforts and results produced by the Organics Preliminary Examination Team during their studies of the samples returned from comet Wild 2 by the Stardust spacecraft
Mauna Kea, Hawaii as an Analogue Site for Future Planetary Resource Exploration: Results from the 2010 ILSO-ISRU Field-Testing Campaign
Within the framework of the International Lunar Surface Operation - In-Situ Resource Utilization Analogue Test held on January 27 - February 11, 2010 on the Mauna Kea volcano in Hawaii, a number of scientific instrument teams collaborated to characterize the field site and test instrument capabilities outside laboratory environments. In this paper, we provide a geological setting for this new field-test site, a description of the instruments that were tested during the 2010 ILSO-ISRU field campaign, and a short discussion for each instrument about the validity and use of the results obtained during the test. These results will form a catalogue that may serve as reference for future test campaigns. In this paper we provide a description and regional geological setting for a new field analogue test site for lunar resource exploration, and discuss results obtained from the 2010 ILSO-ISRU field campaign as a reference for future field-testing at this site. The following instruments were tested: a multispectral microscopic imager, MMI, a Mossbauer spectrometer, an evolved gas analyzer, VAPoR, and an oxygen and volatile extractor called RESOLVE. Preliminary results show that the sediments change from dry, organic-poor, poorly-sorted volcaniclastic sand on the surface, containing basalt, iron oxides and clays, to more water- and organic-rich, fine grained, well-sorted volcaniclastic sand, primarily consisting of iron oxides and depleted of basalt and clays. Furthermore, drilling experiments showed a very close correlation between drilling on the Moon and drilling at the test site. The ILSO-ISRU test site was an ideal location for testing strategies for in situ resource exploration at the lunar or martian surface
- …