17 research outputs found

    Data Driven Tools and Methods for Microtexture Classification and Dwell Fatigue Life Prediction in Dual Phase Titanium Alloys

    Get PDF
    Microtexture has been linked to large reductions in cold dwell fatigue (CDF) life of specific dual phase titanium alloy aeroengine components. A recently completed Metals Affordability Initiative (MAI) funded program led by Pratt & Whitney (P&W) and includes ATI Forged Products, Boeing, GE Aviation, Rolls Royce (RR), Arconic, Titanium Metals Corporation (TIMET), PCC-Wyman Gordon (PCC-WG), Scientific Forming Technologies (SFTC), Materials Resources LLC (MRL) and The Ohio State University (OSU) has developed improved techniques for the characterization of microtexured regions (MTR) in titanium billet and forgings, and integrated computational materials engineering (ICME). These methods are aimed at developing and integrating process and property modeling tools for the prediction of microtexture and fatigue life in titanium components. These characterization and fatigue life prediction tools have near-term application off ramps that will enable use for process and product development and quality control. Key results for two widely used alloys, Ti-6242 and Ti-64, will be reviewed in this paper

    Data Driven Tools and Methods for Microtexture Classification and Dwell Fatigue Life Prediction in Dual Phase Titanium Alloys

    No full text
    Microtexture has been linked to large reductions in cold dwell fatigue (CDF) life of specific dual phase titanium alloy aeroengine components. A recently completed Metals Affordability Initiative (MAI) funded program led by Pratt & Whitney (P&W) and includes ATI Forged Products, Boeing, GE Aviation, Rolls Royce (RR), Arconic, Titanium Metals Corporation (TIMET), PCC-Wyman Gordon (PCC-WG), Scientific Forming Technologies (SFTC), Materials Resources LLC (MRL) and The Ohio State University (OSU) has developed improved techniques for the characterization of microtexured regions (MTR) in titanium billet and forgings, and integrated computational materials engineering (ICME). These methods are aimed at developing and integrating process and property modeling tools for the prediction of microtexture and fatigue life in titanium components. These characterization and fatigue life prediction tools have near-term application off ramps that will enable use for process and product development and quality control. Key results for two widely used alloys, Ti-6242 and Ti-64, will be reviewed in this paper

    Picosecond dynamics of a shock-driven displacive phase transformation in Zr

    Get PDF
    High-pressure solid-state transformations at high strain rates are usually observed after the fact, either during static holding or after unloading, or inferred from interferometry measurements of the sample surface. The emergence of femtosecond x-ray diffraction techniques provides insight into the dynamics of short-time-scale events such as shocks. We report laser pump-probe experiments of the response of Zr to laser-driven shocks over the first few nanoseconds of the shock event, enabling the α→ω transition and orientation relationship to be observed in real time with picosecond resolution. A clear orientation relationship of (101¯10)α||(101¯1)ω is found, in conflict with ω→α annealing experiments in zirconium and the two α→ω pathways proposed for titanium
    corecore