16 research outputs found

    Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula

    Get PDF
    George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat

    A new glacier inventory for 2009 reveals spatial and temporal variability in glacier response to atmospheric warming in the Northern Antarctic Peninsula, 1988–2009

    Get PDF
    The Northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recession and acceleration. However, the dynamic response of land-terminating, ice-shelf tributary and tidewater glaciers has not yet been quantified or assessed for variability, and there are sparse published data for glacier classification, morphology, area, length or altitude. This paper firstly uses ASTER images from 2009 and a SPIRIT DEM from 2006 to classify the area, length, altitude, slope, aspect, geomorphology, type and hypsometry of 194 glaciers on Trinity Peninsula, Vega Island and James Ross Island. Secondly, this paper uses LANDSAT-4 and ASTER images from 1988 and 2001 and data from the Antarctic Digital Database (ADD) from 1997 to document glacier change 1988–2009. From 1988–2001, 90 % of glaciers receded, and from 2001–2009, 79 % receded. Glaciers on the western side of Trinity Peninsula retreated relatively little. On the eastern side of Trinity Peninsula, the rate of recession of ice-shelf tributary glaciers has slowed from 12.9 km<sup>2</sup> a<sup>−1</sup> (1988–2001) to 2.4 km<sup>2</sup> a<sup>−1</sup> (2001–2009). Tidewater glaciers on the drier, cooler Eastern Trinity Peninsula experienced fastest recession from 1988–2001, with limited frontal retreat after 2001. Land-terminating glaciers on James Ross Island also retreated fastest in the period 1988–2001. Large tidewater glaciers on James Ross Island are now declining in areal extent at rates of up to 0.04 km<sup>2</sup> a<sup>−1</sup>. This east-west difference is largely a result of orographic temperature and precipitation gradients across the Antarctic Peninsula. Strong variability in tidewater glacier recession rates may result from the influence of glacier length, altitude, slope and hypsometry on glacier mass balance. High snowfall means that the glaciers on the Western Peninsula are not currently rapidly receding. Recession rates on the eastern side of Trinity Peninsula are slowing as the floating ice tongues retreat into the fjords and the glaciers reach a new dynamic equilibrium. The rapid glacier recession of tidewater glaciers on James Ross Island is likely to continue because of their low elevations and flat profiles. In contrast, the higher and steeper tidewater glaciers on the Eastern Antarctic Peninsula will attain more stable frontal positions after low-lying ablation areas are removed

    Modelling outburst floods from moraine-dammed glacial lakes

    Get PDF
    In response to climatic change, the size and number of moraine-dammed supraglacial and proglacial lake systems have increased dramatically in recent decades. Given an appropriate trigger, the natural moraine dams that impound these proglacial lakes are breached, producing catastrophic Glacial Lake Outburst Floods (GLOFs). These floods are highly complex phenomena, with flood characteristics controlled, in the first instance, by the style of breach formation. Downstream, GLOFs typically exhibit transient, often non-Newtonian fluid dynamics as a result of high rates of sediment entrainment from the dam structure and channel boundaries. Combined, these characteristics introduce numerous modelling challenges. In this review, the historical, contemporary and emerging approaches available to model the individual stages, or components, of a GLOF event are introduced and discussed. A number of methods exist to model the stages of a GLOF event. Dam-breach models can be categorised as being empirical, analytical or numerical in nature, with each method having significant advantages and shortcomings. Empirical relationships that produce estimates of peak discharge and time to peak are straightforward to implement, but the applicability of these models is often limited by the nature of the case study data from which they are derived. Furthermore, empirical models neglect the inclusion of basic hydraulic principles that describe the mechanics of breach formation. Analytical or parametric models simulate breach development using simplified versions of the physically based equations that describe breach enlargement, whilst complex, physically-based codes represent the state-of-the-art in numerical dam-breach modelling. To date, few of the latter have been applied to investigate the moraine-dam failure problem. Despite significant advances in the physical complexity and availability of higher-order hydrodynamic solvers, the majority of published accounts that have attempted to reconstruct or predict GLOF characteristics have been limited, often by necessity, to the use of relatively simplistic models. This is in part attributable to the unavailability of terrain models of many high-mountain catchments at the fine spatial resolutions required for the effective application of numerically-sophisticated codes, and their proprietary (and often cost-prohibitive) nature. However, advanced models are experiencing increasing use in the glacial hazards literature. In particular, the suitability of emerging mesh-free, particle-based methods for simulating dam-breach and GLOF routing may represent a solution to many of the challenges associated with modelling this complex phenomenon. Sources of uncertainty in the GLOF modelling chain have been identified by various workers. However, to date their significance for the robustness of reconstructive and predictive modelling efforts have been largely unexplored and quantified in detail. These sources include the geometric and material characterisation of moraine dam complexes, including lake bathymetry and the presence and extent of buried ice, initial conditions (freeboard, precise spillway dimensions), spatial discretisation of the down-valley domain, hydrodynamic model dimensionality and the dynamic coupling of successive components in the GLOF model cascade

    Glacial erosion and bedrock properties in NW Scotland: Abrasion and plucking, hardness and joint spacing

    Get PDF
    Subglacial erosion beneath glaciers occurs predominantly by abrasion and plucking, producing distinct erosional forms. The controls on the relative importance of abrasion vs. plucking are poorly understood. On the one hand, glacial conditions that favour or suppress cavity formation (ice velocity, ice thickness, and water pressure) are thought to favour plucking or abrasion, respectively. Conversely, bedrock properties are also known to control landforms, but this has rarely been analysed quantitatively. In this study we compare landforms and bedrock properties of sandstone and quartzite at the bed of a palaeo-ice stream near Ullapool in NW Scotland. The boundary between the rock types is at right angles to the westward palaeo-ice flow, and palaeoglacial conditions on both rock types were similar. We report quantitative parameters for bedrock properties (Schmidt hammer hardness and joint spacing) and use morphometric parameters to analyse the landforms. Torridon sandstone is soft but thick-bedded and with a wide joint spacing. Erosional bedforms include roche moutonnées with smoothed tops and concave stoss sides, whalebacks, and elongate p-forms, indicating a high proportion of abrasion over plucking. Cambrian quartzite is hard but thin-bedded with narrow joint spacing. Erosional landforms are angular to subangular with abundant plucked lee faces, suggesting a high proportion of plucking over abrasion. Hardness and joint spacing thus exert a strong control on subglacial erosional landforms and the mechanisms that formed them. Thus glacial conditions (ice velocity, ice thickness) can only be inferred from glacial erosional landforms if the effects of bedrock properties of the substrate are considere
    corecore