2,281 research outputs found
High Performance Computing of Gene Regulatory Networks using a Message-Passing Model
Gene regulatory network reconstruction is a fundamental problem in
computational biology. We recently developed an algorithm, called PANDA
(Passing Attributes Between Networks for Data Assimilation), that integrates
multiple sources of 'omics data and estimates regulatory network models. This
approach was initially implemented in the C++ programming language and has
since been applied to a number of biological systems. In our current research
we are beginning to expand the algorithm to incorporate larger and most diverse
data-sets, to reconstruct networks that contain increasing numbers of elements,
and to build not only single network models, but sets of networks. In order to
accomplish these "Big Data" applications, it has become critical that we
increase the computational efficiency of the PANDA implementation. In this
paper we show how to recast PANDA's similarity equations as matrix operations.
This allows us to implement a highly readable version of the algorithm using
the MATLAB/Octave programming language. We find that the resulting M-code much
shorter (103 compared to 1128 lines) and more easily modifiable for potential
future applications. The new implementation also runs significantly faster,
with increasing efficiency as the network models increase in size. Tests
comparing the C-code and M-code versions of PANDA demonstrate that this
speed-up is on the order of 20-80 times faster for networks of similar
dimensions to those we find in current biological applications
An Alternative Understanding of the Cognitive, Emotional, and Behavioral Characteristics of Individuals Raised in Alcoholic Homes: A Clinical Theory of the Individual
Historically, clinical sociology has assessed problematic, individual behavior as reflective of immediate social circumstance and situation. As such, practitioners have primarily targeted situational factors contributing to individual distress as areas of intervention. The following paper, however, views problematic, individual behavior as having social origins, yet targets strategies for intervention not at the interpersonal level, but at the intra-personal level— within the individual. The logic behind this argument is found in traditional, well-established sociological theory. An analysis of individuals raised in alcoholic homes will be used to demonstrate this perspective
Estimating sample-specific regulatory networks
Biological systems are driven by intricate interactions among the complex
array of molecules that comprise the cell. Many methods have been developed to
reconstruct network models of those interactions. These methods often draw on
large numbers of samples with measured gene expression profiles to infer
connections between genes (or gene products). The result is an aggregate
network model representing a single estimate for the likelihood of each
interaction, or "edge," in the network. While informative, aggregate models
fail to capture the heterogeneity that is represented in any population. Here
we propose a method to reverse engineer sample-specific networks from aggregate
network models. We demonstrate the accuracy and applicability of our approach
in several data sets, including simulated data, microarray expression data from
synchronized yeast cells, and RNA-seq data collected from human lymphoblastoid
cell lines. We show that these sample-specific networks can be used to study
changes in network topology across time and to characterize shifts in gene
regulation that may not be apparent in expression data. We believe the ability
to generate sample-specific networks will greatly facilitate the application of
network methods to the increasingly large, complex, and heterogeneous
multi-omic data sets that are currently being generated, and ultimately support
the emerging field of precision network medicine
- …