338 research outputs found
Recommended from our members
Room reflections and constancy in speech-like sounds: within-band effects
The experiment asks whether constancy in hearing precedes or follows grouping. Listeners heard speech-like
sounds comprising 8 auditory-filter shaped noise-bands that had temporal envelopes corresponding to those
arising in these filters when a speech message is played. The âcontextâ words in the message were ânext youâll
get _to click onâ, into which a âsirâ or âstirâ test word was inserted. These test words were from an 11-step
continuum that was formed by amplitude modulation. Listeners identified the test words appropriately and quite
consistently, even though they had the âroboticâ quality typical of this type of 8-band speech. The speech-like
effects of these sounds appears to be a consequence of auditory grouping. Constancy was assessed by comparing
the influence of room reflections on the test word across conditions where the context had either the same level
of reflections, or where it had a much lower level. Constancy effects were obtained with these 8-band sounds,
but only in âmatchedâ conditions, where the room reflections were in the same bands in both the context and the
test word. This was not the case in a comparison âmismatchedâ condition, and here, no constancy effects were
found. It would appear that this type of constancy in hearing precedes the across-channel grouping whose
effects are so apparent in these sounds. This result is discussed in terms of the ubiquity of grouping across
different levels of representation
Enhancement of the Binding Energy of Charged Excitons in Disordered Quantum Wires
Negatively and positively charged excitons are identified in the
spatially-resolved photoluminescence spectra of quantum wires. We demonstrate
that charged excitons are weakly localized in disordered quantum wires. As a
consequence, the enhancement of the "binding energy" of a charged exciton is
caused, for a significant part, by the recoil energy transferred to the
remaining charged carrier during its radiative recombination. We discover that
the Coulomb correlation energy is not the sole origin of the "binding energy",
in contrast to charged excitons confined in quantum dots.Comment: 4 Fig
Exciton and negative trion dissociation by an external electric field in vertically coupled quantum dots
We study the Stark effect for an exciton confined in a pair of vertically
coupled quantum dots. A single-band approximation for the hole and a parabolic
lateral confinement potential are adopted which allows for the separation of
the lateral center-of-mass motion and consequently for an exact numerical
solution of the Schr\"odinger equation. We show that for intermediate tunnel
coupling the external electric field leads to the dissociation of the exciton
via an avoided crossing of bright and dark exciton energy levels which results
in an atypical form of the Stark shift. The electric-field-induced dissociation
of the negative trion is studied using the approximation of frozen lateral
degrees of freedom. It is shown that in a symmetric system of coupled dots the
trion is more stable against dissociation than the exciton. For an asymmetric
system of coupled dots the trion dissociation is accompanied by a positive
curvature of the recombination energy line as a function of the electric field.Comment: PRB - in prin
Theory of combined exciton-cyclotron resonance in a two-dimensional electron gas: The strong magnetic field regime
I develop a theory of combined exciton-cyclotron resonance (ExCR) in a
low-density two-dimensional electron gas in high magnetic fields. In the
presence of excess electrons an incident photon creates an exciton and
simultaneously excites one electron to higher-lying Landau levels. I derive
exact ExCR selection rules that follow from the existing dynamical symmetries,
magnetic translations and rotations about the magnetic field axis. The nature
of the final states in the ExCR is elucidated. The relation between ExCR and
shake-up processes is discussed. The double-peak ExCR structure for transitions
to the first electron Landau level is predicted.Comment: 5 pages, 3 figures, replaced with the published versio
Absorption spectrum of a weakly n-doped semiconductor quantum well
We calculate, as a function of temperature and conduction band electron
density, the optical absorption of a weakly n-doped, idealized semiconductor
quantum well. In particular, we focus on the absorption band due to the
formation of a charged exciton. We conceptualize the charged exciton as an
itinerant excitation intimately linked to the dynamical response of itinerant
conduction band electrons to the appearance of the photo-generated valence band
hole. Numerical results for the absorption in the vicinity of the exciton line
are presented and the spectral weights associated with, respectively, the
charged exciton band and the exciton line are analyzed in detail. We find, in
qualitative agreement with experimental data, that the spectral weight of the
charged exciton grows with increasing conduction band electron density and/or
decreasing temperature at the expense of the exciton.Comment: 5 pages, 4 figure
Shake-up Processes in a Low-Density Two-Dimensional Electron Gas: Spin-Dependent Transitions to Higher Hole Landau Levels
A theory of shake-up processes in photoabsorption of an interacting
low-density two-dimensional electron gas (2DEG) in strong magnetic fields is
presented. In these processes, an incident photon creates an electron-hole pair
and, because of Coulomb interactions, simultaneously excites one particle to
higher Landau levels (LL's). In this work, the spectra of correlated charged
spin-singlet and spin-triplet electron-hole states in the first hole LL and
optical transitions to these states (i.e., shake-ups to the first hole LL) are
studied. Our results indicate, in particular, the presence of optically-active
three-particle quasi-discrete states in the exciton continuum that may give
rise to surprisingly sharp Fano resonances in strong magnetic fields. The
relation between shake-ups in photoabsorption of the 2DEG and in the 2D hole
gas (2DHG), and shake-ups of isolated negative X^- and positive X^+ trions are
discussed.Comment: 8 pages, 8 figures. References updated, one figure added (Fig. 6).
Accepted in Phys. Rev.
Across-formant integration and speech intelligibility:effects of acoustic source properties in the presence and absence of a contralateral interferer
The role of source properties in across-formant integration was explored using three-formant (F1+F2+F3) analogues of natural sentences (targets). In experiment 1, F1+F3 were harmonic analogues (H1+H3) generated using a monotonous buzz source and second-order resonators; in experiment 2, F1+F3 were tonal analogues (T1+T3). F2 could take either form (H2 or T2). Target formants were always presented monaurally; the receiving ear was assigned randomly on each trial. In some conditions, only the target was present; in others, a competitor for F2 (F2C) was presented contralaterally. Buzz-excited or tonal competitors were created using the time-reversed frequency and amplitude contours of F2. Listeners must reject F2C to optimize keyword recognition. Whether or not a competitor was present, there was no effect of source mismatch between F1+F3 and F2. The impact of adding F2C was modest when it was tonal but large when it was harmonic, irrespective of whether F2C matched F1+F3. This pattern was maintained when harmonic and tonal counterparts were loudness-matched (experiment 3). Source type and competition, rather than acoustic similarity, governed the phonetic contribution of a formant. Contrary to earlier research using dichotic targets, requiring across-ear integration to optimize intelligibility, H2C was an equally effective informational masker for H2 as for T2
Magnetic field dependence of the energy of negatively charged excitons in semiconductor quantum wells
A variational calculation of the spin-singlet and spin-triplet state of a
negatively charged exciton (trion) confined to a single quantum well and in the
presence of a perpendicular magnetic field is presented. We calculated the
probability density and the pair correlation function of the singlet and
triplet trion states. The dependence of the energy levels and of the binding
energy on the well width and on the magnetic field strength was investigated.
We compared our results with the available experimental data on GaAs/AlGaAs
quantum wells and find that in the low magnetic field region (B<18 T) the
observed transition are those of the singlet and the dark triplet trion (with
angular momentum ), while for high magnetic fields (B>25 T) the dark
trion becomes optically inactive and possibly a transition to a bright triplet
trion (angular momentum ) state is observed.Comment: 9 pages, 10 figures submitted to Phys. Rev.
Manipulation of the Spin Memory of Electrons in n-GaAs
We report on the optical manipulation of the electron spin relaxation time in
a GaAs based heterostructure. Experimental and theoretical study shows that the
average electron spin relaxes through hyperfine interaction with the lattice
nuclei, and that the rate can be controlled by the electron-electron
interactions. This time has been changed from 300 ns down to 5 ns by variation
of the laser frequency. This modification originates in the optically induced
depletion of n-GaAs layer
- âŠ