428 research outputs found

    Dynamic criticality in glass-forming liquids

    Full text link
    We propose that the dynamics of supercooled liquids and the formation of glasses can be understood from the existence of a zero temperature dynamical critical point. To support our proposal, we derive from simple physical assumptions a dynamic field theory for supercooled liquids, which we study using the renormalization group (RG). Its long time behaviour is dominated by a zero temperature critical point, which for dimensions d > 2 belongs to the directed percolation universality class. Molecular dynamics simulations confirm the existence of dynamic scaling behaviour consistent with the RG predictions.Comment: 4 pages, 2 figure

    Impurity state in Haldane gap for S=1 Heisenberg antiferromagnetic chain with bond doping

    Full text link
    Using a new impurity density matrix renormalization group scheme, we establish a reliable picture of how the low lying energy levels of a S=1S=1 Heisenberg antiferromagnetic chain change {\it quantitatively} upon bond doping. A new impurity state gradually occurs in the Haldane gap as J′<JJ' < J, while it appears only if J′/J>γcJ'/J>\gamma_c with 1/γc=0.7081/\gamma_c=0.708 as J′>JJ'>J. The system is non-perturbative as 1≤J′/J≤γc1\leq J'/J\leq\gamma_c. This explains the appearance of a new state in the Haldane gap in a recent experiment on Y2−x_{2-x}Cax_xBaNiO5_5 [J.F. DiTusa, et al., Phys. Rev. Lett. 73 1857(1994)].Comment: 4 pages of uuencoded gzip'd postscrip

    Electron Spin Resonance of defects in the Haldane System Y(2)BaNiO(5)

    Full text link
    We calculate the electron paramagnetic resonance (EPR) spectra of the antiferromagnetic spin-1 chain compound Y(2)BaNi(1-x)Mg(x)O(5) for different values of x and temperature T much lower than the Haldane gap (~100K). The low-energy spectrum of an anisotropic Heisenberg Hamiltonian, with all parameters determined from experiment, has been solved using DMRG. The observed EPR spectra are quantitatively reproduced by this model. The presence of end-chain S=1/2 states is clearly observed as the main peak in the spectrum and the remaining structure is completely understood.Comment: 5 pages, 4 figures include

    Edge states in Open Antiferromagnetic Heisenberg Chains

    Full text link
    In this letter we report our results in investigating edge effects of open antiferromagnetic Heisenberg spin chains with spin magnitudes S=1/2,1,3/2,2S=1/2, 1,3/2,2 using the density-matrix renormalization group (DMRG) method initiated by White. For integer spin chains, we find that edge states with spin magnitude Sedge=S/2S_{edge}=S/2 exist, in agreement with Valence-Bond-Solid model picture. For half-integer spin chains, we find that no edge states exist for S=1/2S=1/2 spin chain, but edge state exists in S=3/2S=3/2 spin chain with Sedge=1/2S_{edge}=1/2, in agreement with previous conjecture by Ng. Strong finite size effects associated with spin dimmerization in half-integer spin chains will also be discussed.Comment: 4 pages, RevTeX 3.0, 5 figures in a separate uuencoded postscript file. Replaced once to enlarge the acknowlegement

    Levy flights from a continuous-time process

    Full text link
    The Levy-flight dynamics can stem from simple random walks in a system whose operational time (number of steps n) typically grows superlinearly with physical time t. Thus, this processes is a kind of continuous-time random walks (CTRW), dual to usual Scher-Montroll model, in which nn grows sublinearly with t. The models in which Levy-flights emerge due to a temporal subordination let easily discuss the response of a random walker to a weak outer force, which is shown to be nonlinear. On the other hand, the relaxation of en ensemble of such walkers in a harmonic potential follows a simple exponential pattern and leads to a normal Boltzmann distribution. The mixed models, describing normal CTRW in superlinear operational time and Levy-flights under the operational time of subdiffusive CTRW lead to paradoxical diffusive behavior, similar to the one found in transport on polymer chains. The relaxation to the Boltzmann distribution in such models is slow and asymptotically follows a power-law

    Large-Scale Numerical Evidence for Bose Condensation in the S=1 Antiferromagnetic Chain in a Strong Field

    Full text link
    Using the recently proposed density matrix renormalization group technique we show that the magnons in the S=1 antiferromagnetic Heisenberg chain effectively behaves as bosons that condense at a critical field h_c.Comment: 12 pages, REVTEX 3.0, 3 postscript figures appended, UBCTP-93-00

    The Haldane Energy Gap of A Doped Linear-Chain Heisenberg Antiferromagnet

    Full text link
    Using the valence-bond-solid (VBS) approach and the Schwinger boson mean field approximation, we study the dependence of the Haldane gap of a spin-1 linear chain Heisenberg antiferromagnet on impurity doping with different spins. The impurity spins affect the singlet pairing order parameter Δ\Delta and the constraint factor λ\lambda. As a result, the Haldane gap is reduced by a factor ∼ni2/3 \sim n_i^{2/3}, with nin_i as the impurity concentration, and eventually collapses at ni∼1/ξn_i \sim 1/\xi with ξ\xi as the VBS correlation length. This theoretical prediction can be verified by neutron scattering experiments.Comment: REVTEX, 12 pages, no figure

    Thermodynamics of the bilinear-biquadratic spin one Heisenberg chain

    Full text link
    The magnetic susceptibility and specific heat of the one-dimensional S=1 bilinear-biquadratic Heisenberg model are calculated using the transfer matrix renormalization group. By comparing the results with the experimental data of LiVGe2O6{\rm LiVGe_2O_6} measured by Millet et al. (Phys. Rev. Lett. {\bf 83}, 4176 (1999)), we find that the susceptibility data of this material, after subtracting the impurity contribution, can be quantitatively explained with this model. The biquadratic exchange interaction in this material is found to be ferromagnetic, i.e. with a positive coupling constant.Comment: 4 pages, 4 postscript figure

    The Haldane gap for the S=2 antiferromagnetic Heisenberg chain revisited

    Full text link
    Using the density matrix renormalization group (DMRG) technique, we carry out a large scale numerical calculation for the S=2 antiferromagnetic Heisenberg chain. Performing systematic scaling analysis for both the chain length LL and the number of optimal states kept in the iterations mm, the Haldane gap Δ(2)\Delta (2) is estimated accurately as (0.0876±0.0013)J(0.0876\pm0.0013)J. Our systematic analysis for the S=2 chains not only ends the controversies arising from various DMRG calculations and Monte Carlo simulations, but also sheds light on how to obtain reliable results from the DMRG calculations for other complicated systems.Comment: 4 pages and 1 figur

    Distribution of exchange energy in a bond-alternating S=1 quantum spin chain

    Full text link
    The quasi-one-dimensional bond-alternating S=1 quantum antiferromagnet NTENP is studied by single crystal inelastic neutron scattering. Parameters of the measured dispersion relation for magnetic excitations are compared to existing numerical results and used to determine the magnitude of bond-strength alternation. The measured neutron scattering intensities are also analyzed using the 1st-moment sum rules for the magnetic dynamic structure factor, to directly determine the modulation of ground state exchange energies. These independently determined modulation parameters characterize the level of spin dimerization in NTENP. First-principle DMRG calculations are used to study the relation between these two quantities.Comment: 10 pages, 10 figure
    • …
    corecore