9 research outputs found

    Thermal Transition Design and Beam Heat-load Estimation for the COLDDIAG Refurbishment

    Get PDF
    The COLDDIAG (cold vacuum chamber for beam heat load diagnostics) developed at Karlsruhe Institute of Technology has been modified for more studies at cryogenic temperatures different from the previous operations at 4 K in a cold bore and at 50 K in a thermal shield. The key components in this campaign are two thermal transitions connecting both ends of the bore at 50 K with the shield at the same or higher temperature. In this paper, we present design efforts for the compact transitions, allowed heat intakes to the cooling power margin and mechanical robustness in the cryogenic environment. A manufacture scheme for the transition and its peripheral is also given. In addition, the beam heat loads in the refurbished COLDDIAG are estimated in terms of the accelerator beam parameters

    Progress of the Development of a Superconducting Undulator as a THz Source for FELs

    Get PDF
    To produce radiation in the THz frequency range at X-ray Free Electron Lasers, undulators with large period length, high fields, and large gaps are required. These demands can be fulfilled by superconducting undulators. In this contribution, the actual requirements on the main parameters of such a superconducting undulator will be discussed and the progress of the design will be discussed. In addition, beam impedance and heat load results obtained analytically as well as by large-scale wakefield simulations will be presented

    Field quality of 1.5 m long conduction cooled superconducting undulator coils with 20 mm period length

    Get PDF
    The Institute for Beam Physics and Technology (IBPT) at the Karlsruhe Institute of Technology (KIT) and the industrial partner Babcock Noell GmbH (BNG) are collaborating since 2007 on the development of superconducting undulators both for ANKA and low emittance light sources. The first full length device with 15 mm period length has been successfully tested in the ANKA storage ring for one year. The next superconducting undulator has 20 mm period length (SCU20) and is also planned to be installed in the accelerator test facility and synchrotron light source ANKA. The SCU20 1.5 m long coils have been characterized in a conduction cooled horizontal test facility developed at KIT IBPT. Here we present the local magnetic field and field integral measurements, as well as their analysis including the expected photon spectrum

    Investigation of Beam Impedance and Heat Load in a High Temperature Superconducting Undulator

    Get PDF
    The use of high temperature superconducting (HTS) materials can enhance the performance of superconducting undulators (SCU), which can later be implemented in free electron laser facilities, synchrotron storage rings and light sources. In particular, the short period < 10 mm undulators with narrow magnetic gap < 4 mm are relevant. One of the promising approaches considers a 10 cm meander-structured HTS tapes stacked one above the other. Then, the HTS tape is wound on the SCU. The idea of this jointless undulator has been proposed by, and is being further developed at KIT. Since minimizing the different sources of heat load is a critical issue for all SCUs, a detailed analysis of the impedance and heat load is required to meet the cryogenic system design. The dominant heat source is anticipated to be the resistive surface loss, which is one of the subjects of this study. Considering the complexity of the HTS tape, the impedance model includes the geometrical structure of the HTS tapes as well as the anomalous skin effect. The results of the numerical investigation performed by the help of the CST PS solver will be presented and discussed

    Commissioning of a 1.6 m long 16mm period superconducting undulator at the Australian Synchrotron

    Get PDF
    A 1.6 m long 16 mm period superconducting undulator (SCU16) has been installed and commissioned at the Australian Synchrotron. The SCU16, developed by Bilfinger Noell GmbH, is based on the SCU20 currently operating at at KIT. The SCU16 is conduction cooled with a maximum on axis field of 1.084 T and a fixed effective vacuum gap of 5.5 mm. The design and performance of the longest superconducting undulator at a light source will be presented

    Investigations on NbTi superconducting racetrack coils under pulsed-current excitations

    Get PDF
    One of the key issues in the technology of superconductors is the protection against quenches. When designing a superconductor as a magnet, a coil or even current leads, the design should be made such that the superconductor withstands all operational conditions as fast discharges, pulsed loads or even rapid transient background fields. Computational modeling of pulsed-current characterization in a self-field NbTi racetrack sample coil has been performed using the finite element modelling software Opera as a step towards understanding the thermal and electromagnetic processes during a quench. The pulse was modelled to be generated by discharging a capacitor into an RLC circuit, which includes the NbTi racetrack coil as the sample under test. The coil was driven to the resistive state and the quench occurred by applying the pulse with a peak value exceeding the critical current of the sample coil. This contribution presents the results obtained from investigating a pulsed NbTi coil in a model based on an electromagnetic analysis. In addition, a comparison to the theoretical expectations derived for the damped oscillations in the pulse-driving circuit is given. Finally, the results from a coupled analysis, where both thermal and electromagnetic properties are being considered, within a quench multi-physics study are presented

    Prospects for photon science and beam dynamics studies of a THz undulator at FLUTE

    Get PDF
    n recent years the interest in high intensity, short-pulse coherent THz radiation for non-linear experimental research and applications grew with upcoming high intensity lasers. In contrast to lasers, accelerators provide free electrons for which emission properties can be tailored to the demand at typically much higher repetition rates than high-intensity lasers can provide. Efforts are ongoing to augment short-bunch accelerators such as the European XFEL with THz radiation sources such as undulators. At the far-infrared linac and test experiment (FLUTE) at KIT, we can facil- itate experiments to investigate coherent THz radiation from different sources and provide short electron bunches. As an additional THz source, a superconducting undulator can be inserted and investigated. In this contribution, we evaluate the opportunities of this THz undulator at FLUTE for linear accelerators and FELs in terms of photon science and beam dynamics

    Energy deposition simulations for a damage experiment with superconducting sample coils

    Get PDF
    An experiment to study damage caused by the impact of 440 GeV/c protons on sample superconducting racetrack coils made from NbTi and Nb3Sn strands was recently carried out at CERN\u27s HiRadMat facility. This paper reports on the detailed Monte Carlo simulations performed with FLUKA and Geant4 to evaluate the energy deposition of the 440 GeV/c proton beam on the sample coils positioned in the experimental setup. using the measured beam parameters during the experiment. The measured hotspot temperatures and temperature gradients reached in the sample coils are presented and compared with the simulations. In addition, comparisons between the simulation results from FLUKA and Geant4 are discussed in detail
    corecore