7 research outputs found

    Randomized, Noncomparative, Phase II Trial of Early Switch From Docetaxel to Cabazitaxel or Vice Versa, With Integrated Biomarker Analysis, in Men With Chemotherapy-Naïve, Metastatic, Castration-Resistant Prostate Cancer

    Get PDF
    Purpose The TAXYNERGY trial ( ClinicalTrials.gov identifier: NCT01718353) evaluated clinical benefit from early taxane switch and circulating tumor cell (CTC) biomarkers to interrogate mechanisms of sensitivity or resistance to taxanes in men with chemotherapy-naïve, metastatic, castration-resistant prostate cancer. Patients and Methods Patients were randomly assigned 2:1 to docetaxel or cabazitaxel. Men who did not achieve ≥ 30% prostate-specific antigen (PSA) decline by cycle 4 (C4) switched taxane. The primary clinical endpoint was confirmed ≥ 50% PSA decline versus historical control (TAX327). The primary biomarker endpoint was analysis of post-treatment CTCs to confirm the hypothesis that clinical response was associated with taxane drug-target engagement, evidenced by decreased percent androgen receptor nuclear localization (%ARNL) and increased microtubule bundling. Results Sixty-three patients were randomly assigned to docetaxel (n = 41) or cabazitaxel (n = 22); 44.4% received prior potent androgen receptor-targeted therapy. Overall, 35 patients (55.6%) had confirmed ≥ 50% PSA responses, exceeding the historical control rate of 45.4% (TAX327). Of 61 treated patients, 33 (54.1%) had ≥ 30% PSA declines by C4 and did not switch taxane, 15 patients (24.6%) who did not achieve ≥ 30% PSA declines by C4 switched taxane, and 13 patients (21.3%) discontinued therapy before or at C4. Of patients switching taxane, 46.7% subsequently achieved ≥ 50% PSA decrease. In 26 CTC-evaluable patients, taxane-induced decrease in %ARNL (cycle 1 day 1 v cycle 1 day 8) was associated with a higher rate of ≥ 50% PSA decrease at C4 ( P = .009). Median composite progression-free survival was 9.1 months (95% CI, 4.9 to 11.7 months); median overall survival was not reached at 14 months. Common grade 3 or 4 adverse events included fatigue (13.1%) and febrile neutropenia (11.5%). Conclusion The early taxane switch strategy was associated with improved PSA response rates versus TAX327. Taxane-induced shifts in %ARNL may serve as an early biomarker of clinical benefit in patients treated with taxanes

    Peloruside- and laulimalide-resistant human ovarian carcinoma cells have βI-tubulin mutations and altered expression of βII- and βIII-tubulin isotypes

    No full text
    Peloruside A and laulimalide are potent microtubule-stabilizing natural products with a mechanism of action similar to that of paclitaxel. However, the binding site of peloruside A and laulimalide on tubulin remains poorly understood. Drug resistance in anticancer treatment is a serious problem. We developed peloruside A- and laulimalide-resistant cell lines by selecting 1A9 human ovarian carcinoma cells that were able to grow in the presence of one of these agents. The 1A9-laulimalide resistant cells (L4) were 39-fold resistant to the selecting agent and 39-fold cross-resistant to peloruside A, whereas the 1A9-peloruside A resistant cells (R1) were 6-fold resistant to the selecting agent while they remained sensitive to laulimalide. Neither cell line showed resistance to paclitaxel or other drugs that bind to the taxoid site on β-tubulin nor was there resistance to microtubule-destabilizing drugs. The resistant cells exhibited impaired peloruside A/laulimalide-induced tubulin polymerization and impaired mitotic arrest. Tubulin mutations were found in the βI-tubulin isotype, R306H or R306C for L4 and A296T for R1 cells. This is the first cell-based evidence to support a β-tubulin–binding site for peloruside A and laulimalide. To determine whether the different resistance phenotypes of the cells were attributable to any other tubulin alterations, the β-tubulin isotype composition of the cells was examined. Increased expression of βII- and βIII-tubulin was observed in L4 cells only. These results provide insight into how alterations in tubulin lead to unique resistance profiles for two drugs, peloruside A and laulimalide, that have a similar mode of action
    corecore