185 research outputs found

    Breeding programs on Atlantic salmon in Norway: lessons learned

    Get PDF
    An early establishment of selective breeding programs on Atlantic salmon has been crucial for the success of developing efficient and sustainable salmon farming in Norway. A national selective breeding program was initiated by AKVAFORSK at the beginning of the 1970s, by collecting fertilized eggs from more than 40 Norwegian river populations. Several private selective breeding programs were also initiated in the 1970s and 1980s. While these private programs were initiated using individual selection (i.e. massselection) to genetically improve growth, the national program was designed to gradually include all economically important traits in the breeding objective (i.e. growth, age at sexual maturation, disease resistance and quality traits) using a combined family and within-family selection strategy. Independent of which selection strategy and program design used, it is important to secure and maintain a broad genetic variation in the breeding populations to maximize selection response. It has been documented that genetically improved salmon from the national selective breeding program grow twice as fast as wild Atlantic salmon and require 25 per cent less feed, while salmon representing the private breeding programs all show an intermediate growth performance. As a result of efficient dissemination of genetically improved Atlantic salmon, the Norwegian salmon farming industry has reduced its feed costs by more than US$ 230 million per year! The national selective breeding program on Atlantic salmon was commercialized into a breeding company (AquaGen) in 1992. Five years later, several private companies and the AKVAFORSK Genetics Center (AFGC) established a second breeding company (SalmoBreed) using breeding candidates from one of the private breeding programs. These two breeding companies have similar products, but different strategies on how to organize the breeding program and to disseminate the genetically improved seed to the Norwegian salmon industry. Greater competition has increased the necessity to document the genetic gain obtained from the different programs and to market the economic benefits of farming the genetically improved breeds. Both breeding companies have organized their dissemination to get a sufficient share of the economic benefits in order to sustain and improve their breeding programs

    Breeding programs on Atlantic salmon in Norway: lessons learned

    Get PDF
    An early establishment of selective breeding programs on Atlantic salmon has been crucial for the success of developing efficient and sustainable salmon farming in Norway. A national selective breeding program was initiated by AKVAFORSK at the beginning of the 1970s, by collecting fertilized eggs from more than 40 Norwegian river populations. Several private selective breeding programs were also initiated in the 1970s and 1980s. While these private programs were initiated using individual selection (i.e. massselection) to genetically improve growth, the national program was designed to gradually include all economically important traits in the breeding objective (i.e. growth, age at sexual maturation, disease resistance and quality traits) using a combined family and within-family selection strategy. Independent of which selection strategy and program design used, it is important to secure and maintain a broad genetic variation in the breeding populations to maximize selection response. It has been documented that genetically improved salmon from the national selective breeding program grow twice as fast as wild Atlantic salmon and require 25 per cent less feed, while salmon representing the private breeding programs all show an intermediate growth performance. As a result of efficient dissemination of genetically improved Atlantic salmon, the Norwegian salmon farming industry has reduced its feed costs by more than US$ 230 million per year! The national selective breeding program on Atlantic salmon was commercialized into a breeding company (AquaGen) in 1992. Five years later, several private companies and the AKVAFORSK Genetics Center (AFGC) established a second breeding company (SalmoBreed) using breeding candidates from one of the private breeding programs. These two breeding companies have similar products, but different strategies on how to organize the breeding program and to disseminate the genetically improved seed to the Norwegian salmon industry. Greater competition has increased the necessity to document the genetic gain obtained from the different programs and to market the economic benefits of farming the genetically improved breeds. Both breeding companies have organized their dissemination to get a sufficient share of the economic benefits in order to sustain and improve their breeding programs.Biotechnology, Genetics, Food fish, Genetic drift, Genetic diversity, Aquatic animals, DNA, Selective breeding, Breeding success, Research programmes Salmonidae

    Breeding plan for silver barb (Puntius gonionotus) in Vietnam: individual (mass) selection to improve growth rate

    Get PDF
    Selective breeding, Fish culture, Growth, Aquaculture techniques, Genetics, Viet Nam, Puntius gonionotus

    Digestibility in selected rainbow trout families and modelling of growth from the specific intake of digestible protein

    Get PDF
    The experiments aimed to clarify variations in digestibility of dietary nutrients in rainbow trout. Furthermore, the objective was to study how differences in digestibility might be related to growth and feed utilisation at various growth rates. When comparing the results from the experiments it appeared that particularly protein digestibility was closely related to specific growth rate and feed conversion ratio at high growth rates. As a tool to visualise the relationship between protein digestibility and growth of rainbow trout a growth model was developed based on the specific intake of digestible protein, and general assumptions on protein content and protein retention efficiency in rainbow trout. The model indicated that increased protein digestibility only partly explained growth increase and that additional factors were important for growth increment

    The power to detect artificial selection acting on single loci in recently domesticated species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increasing number of aquaculture species are subjected to artificial selection in systematic breeding programs. Rapid improvements of important commercial traits are reported, but little is known about the effects of the strong directional selection applied, on gene level variation. Large numbers of genetic markers are becoming available, making it feasible to detect and estimate these effects. Here a simulation tool was developed in order to explore the power by which single genetic loci subjected to uni-directional selection in parallel breeding populations may be detected.</p> <p>Findings</p> <p>Two simulation models were pursued: 1) screening for loci displaying higher genetic differentiation than expected (high-F<sub>ST </sub>outliers), from neutral evolution between a pool of domesticated populations and a pool of wild populations; 2) screening for loci displaying lower genetic differentiation (low-F<sub>ST </sub>outliers) between domesticated strains than expected from neutral evolution. The premise for both approaches was that the isolated domesticated strains are subjected to the same breeding goals. The power to detect outlier loci was calculated under the following parameter values: number of populations, effective population size per population, number of generations since onset of selection, initial F<sub>ST</sub>, and the selection coefficient acting on the locus. Among the parameters investigated, selection coefficient, the number of generation since onset of selection, and number of populations, had the largest impact on power. The power to detect loci subjected to directional in breeding programmes was high when applying the between farmed and wild population approach, and low for the between farmed populations approach.</p> <p>Conclusions</p> <p>A simulation tool was developed for estimating the power to detect artificial selection acting directly on single loci. The simulation tool should be applicable to most species subject to domestication, as long as a reasonable high accuracy in input parameters such as effective population size, number of generations since the initiation of selection, and initial differentiation (F<sub>ST</sub>) can be obtained. Identification of genetic loci under artificial selection would be highly valuable, since such loci could be used to monitor maintenance of genetic variation in the breeding populations and monitoring possible genetic changes in wild populations from genetic interaction between escapees and their wild counterpart.</p

    Prevalence of Anaplasma phagocytophilum infection and effect on lamb growth

    Get PDF
    Background: A major challenge in sheep farming during the grazing season along the coast of south-western Norway is tick-borne fever (TBF) caused by the bacteria Anaplasma phagocytophilum that is transmitted by the tick Ixodes ricinus. Methods: A study was carried out in 2007 and 2008 to examine the prevalence of A. phagocytophilum infection and effect on weaning weight in lambs. The study included 1208 lambs from farms in Sunndal Ram Circle in Møre and Romsdal County in Mid-Norway, where ticks are frequently observed. All lambs were blood sampled and serum was analyzed by an indirect fluorescent antibody assay (IFA) to determine an antibody status (positive or negative) to A. phagocytophilum infection. Weight and weight gain and possible effect of infection were analyzed using ANOVA and the MIXED procedure in SAS. Results: The overall prevalence of infection with A. phagocytophilum was 55%. A lower weaning weight of 3% (1.34 kg, p < 0.01) was estimated in lambs seropositive to an A. phagocytophilum infection compared to seronegative lambs at an average age of 137 days. Conclusions: The results show that A. phagocytophilum infection has an effect on lamb weight gain. The study also support previous findings that A. phagocytophilum infection is widespread in areas where ticks are prevalent, even in flocks treated prophylactic with acaricides

    Breeding plan for common carp (Cyprinus carpio) in Indonesia: multiple-trait selection

    Get PDF
    Selective breeding, Genetics, Fish culture, Aquaculture techniques, Indonesia, Cyprinus carpio

    Gene Expression Profiling of Soft and Firm Atlantic Salmon Fillet

    Get PDF
    Texture of salmon fillets is an important quality trait for consumer acceptance as well as for the suitability for processing. In the present work we measured fillet firmness in a population of farmed Atlantic salmon with known pedigree and investigated the relationship between this trait and gene expression. Transcriptomic analyses performed with a 21 K oligonucleotide microarray revealed strong correlations between firmness and a large number of genes. Highly similar expression profiles were observed in several functional groups. Positive regression was found between firmness and genes encoding proteasome components (41 genes) and mitochondrial proteins (129 genes), proteins involved in stress responses (12 genes), and lipid metabolism (30 genes). Coefficients of determination (R2) were in the range of 0.64–0.74. A weaker though highly significant negative regression was seen in sugar metabolism (26 genes, R2 = 0.66) and myofiber proteins (42 genes, R2 = 0.54). Among individual genes that showed a strong association with firmness, there were extracellular matrix proteins (negative correlation), immune genes, and intracellular proteases (positive correlation). Several genes can be regarded as candidate markers of flesh quality (coiled-coil transcriptional coactivator b, AMP deaminase 3, and oligopeptide transporter 15) though their functional roles are unclear. To conclude, fillet firmness of Atlantic salmon depends largely on metabolic properties of the skeletal muscle; where aerobic metabolism using lipids as fuel, and the rapid removal of damaged proteins, appear to play a major role
    • …
    corecore