49 research outputs found

    No Evidence for a Cumulative Impact Effect on Concussion Injury Threshold

    Full text link
    Recent studies using a helmet-based accelerometer system (Head Impact Telemetry System [HITS]) have demonstrated that concussions result from a wide range of head impact magnitudes. Variability in concussion thresholds has been proposed to result from the cumulative effect of non-concussive head impacts prior to injury. We used the HITS to collect biomechanical data representing >100,000 head impacts in 95 high school football players over 4 years. The cumulative impact histories prior to 20 concussive impacts in 19 athletes were compared to the cumulative impact histories prior to the three largest magnitude non-concussive head impacts in the same athletes. No differences were present in any impact history variable between the concussive and non-concussive high magnitude impacts. These analyses included the number of head impacts, cumulative HIT severity profile value, cumulative linear acceleration, and cumulative rotational acceleration during the same practice or game session, as well as over the 30-min and 1 week preceding these impacts. Our data do not support the proposal that impact volume or intensity influence concussion threshold in high school football athletes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90490/1/neu-2E2011-2E1910.pd

    The National Institute of Neurological Disorders and Stroke and Department of Defense Sport-Related Concussion Common Data Elements Version 1.0 Recommendations

    Get PDF
    Aim: Through a partnership with the National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), and Department of Defense (DoD), the development of Sport-Related Concussion (SRC) Common Data Elements (CDEs) was initiated. The aim of this collaboration was to increase the efficiency and effectiveness of clinical research studies and clinical treatment outcomes, increase data quality, facilitate data sharing across studies, reduce study start-up time, more effectively aggregate information into metadata results, and educate new clinical investigators. Materials/Methods: The SRC CDE Working Group consisted of 34 worldwide experts in concussion from varied fields of related expertise, divided into three Subgroups: Acute (3 months post-concussion). To develop CDEs, the Subgroups reviewed various domains, and then selected from, refined, and added to existing CDEs, case report forms and field-tested data elements from national registries and funded research studies. Recommendations were posted to the NINDS CDE Website for Public Review from February 2017 to April 2017. Results: Following an internal Working Group review of recommendations, along with consideration of comments received from the Public Review period, the first iteration (Version 1.0) of the NINDS SRC CDEs was completed in June 2017. The recommendations include Core and Supplemental ? Highly Recommended CDEs for cognitive data elements and symptom checklists, as well as other outcomes and endpoints (e.g., vestibular, oculomotor, balance, anxiety, depression) and sample case report forms (e.g., injury reporting, demographics, concussion history) for domains typically included in clinical research studies. Interpretation: The NINDS SRC CDEs and supporting documents are publicly available on the NINDS CDE website https://www.commondataelements.ninds.nih.gov/. Widespread use of CDEs by researchers and clinicians will facilitate consistent SRC clinical research and trial design, data sharing, and metadata retrospective analysis
    corecore