946 research outputs found

    Introduction

    Full text link

    The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens

    Get PDF
    The rate of expansion of bacterial colonies of S. liquefaciens is investigated in terms of a mathematical model that combines biological as well as hydrodynamic processes. The relative importance of cell differentiation and production of an extracellular wetting agent to bacterial swarming is explored using a continuum representation. The model incorporates aspects of thin film flow with variable suspension viscosity, wetting, and cell differentiation. Experimental evidence suggests that the bacterial colony is highly sensitive to its environment and that a variety of mechanisms are exploited in order to proliferate on a variety of surfaces. It is found that a combination of effects are required to reproduce the variation of bacterial colony motility over a large range of nutrient availability and medium hardness

    The Danish Purge-Laws

    Get PDF

    The Danish Purge-Laws

    Get PDF

    Civic engagement through mainstream online newspapers: Possibilities and shortcomings

    Get PDF
    Based on a pilot study of online news making and commenting in Denmark, the article discusses the relationship between online political news making and democracy. Empirical insights on the dynamics of user engagement and debates on mainstream Danish online news platforms are used to delineate the contours of the online public sphere. It is argued that the new digital media should be discussed not only as a new forum for political participation but also in relation to traditional forms of representative democracy. The analysis comprises the technical features and apps that are designed by online news providers in Denmark to facilitate the constitution of new “voice publics”. How these voice publics are designed as an element of news making and news distribution and, as such, linked to the old “representative” and “attentive publics” of news consumption is investigated

    Media and civic engagement

    Get PDF

    Bacterial Biofilm Control by Perturbation of Bacterial Signaling Processes

    Get PDF
    The development of effective strategies to combat biofilm infections by means of either mechanical or chemical approaches could dramatically change today’s treatment procedures for the benefit of thousands of patients. Remarkably, considering the increased focus on biofilms in general, there has still not been invented and/or developed any simple, efficient and reliable methods with which to “chemically” eradicate biofilm infections. This underlines the resilience of infective agents present as biofilms and it further emphasizes the insufficiency of today’s approaches used to combat chronic infections. A potential method for biofilm dismantling is chemical interception of regulatory processes that are specifically involved in the biofilm mode of life. In particular, bacterial cell to cell signaling called “Quorum Sensing” together with intracellular signaling by bis-(3′-5′)-cyclic-dimeric guanosine monophosphate (cyclic-di-GMP) have gained a lot of attention over the last two decades. More recently, regulatory processes governed by two component regulatory systems and small non-coding RNAs have been increasingly investigated. Here, we review novel findings and potentials of using small molecules to target and modulate these regulatory processes in the bacterium Pseudomonas aeruginosa to decrease its pathogenic potential

    Quantitative effects of medium hardness and nutrient availability on the swarming motility of <i>Serratia liquefaciens</i>

    Get PDF
    We report the first controlled measurements of expansion rates for swarming colonies of Serratia liquefaciens under different growth conditions, combined with qualitative observations of the organization of the colony into regions of differentiated cell types. Significantly, the results reveal that swarming colonies of S. liquefaciens can have an increasing expansion rate with time. We compare and contrast the expansion rate results with predictions from a recent mathematical model which coupled key hydrodynamical and biological mechanisms. Furthermore, we investigate whether the swarming colonies grow according to a power law or exponentially (for large times), as suggested by recent theoretical results
    corecore