1,102 research outputs found

    Dairy foods and body mass index over 10-year: evidence from the Caerphilly Prospective Cohort Study

    Get PDF
    The association between dairy product consumption and body mass index (BMI) remains controversial. The aim of the present study was to investigate the association between total dairy, milk, cheese, cream and butter consumption and BMI change over a 10-year follow-up by using long-term follow-up cohort data from the Caerphilly Prospective Cohort Study (CAPS). The CAPS included 2512 men aged 45⁻59 years at baseline, who were followed up at 5-year intervals for over 20-year. A semi-quantitative food frequency questionnaire estimated the intake of dairy consumption, including milk, cheese, cream and butter at baseline, 5-year and 10-year follow-up. In total, men free of cardiovascular disease, diabetes and cancer ( = 1690) were included in current analysis. General linear regression and logistic regression were used for data analysis. The results showed higher cheese consumption was associated with lower BMI at the 5-year follow-up ( = 0.013). There was no evidence that higher consumption of total dairy, milk, cream and butter were significantly associated with BMI during the over the 10-year following-up. This study suggest that cheese consumption have beneficial effects on lowering BMI, which needs further investigation

    The association between neighborhood economic hardship, the retail food environment, fast food intake, and obesity: findings from the Survey of the Health of Wisconsin

    Get PDF
    Background: Neighborhood-level characteristics such as economic hardship and the retail food environment are assumed to be correlated and to influence consumers' dietary behavior and health status, but few studies have investigated these different relationships comprehensively in a single study. This work aims to investigate the association between neighborhood-level economic hardship, the retail food environment, fast food consumption, and obesity prevalence. Methods: Linking data from the population-based Survey of the Health of Wisconsin (SHOW, n = 1,570, 2008-10) and a commercially available business database, the Wisconsin Retail Food Environment Index (WRFEI) was defined as the mean distance from each participating household to the three closest supermarkets divided by the mean distance to the three closest convenience stores or fast food restaurants. Based on US census data, neighborhood-level economic hardship was defined by the Economic Hardship Index (EHI). Relationships were analyzed using multivariate linear and logistic regression models. Results: SHOW residents living in neighborhoods with the highest economic hardship faced a less favorable retail food environment (WRFEI = 2.53) than residents from neighborhoods with the lowest economic hardship (WRFEI = 1.77; p-trend < 0.01). We found no consistent or significant associations between the WRFEI and obesity and only a weak borderline-significant association between access to fast food restaurants and self-reported fast food consumption (≥2 times/week, OR = 0.59-0.62, p = 0.05-0.09) in urban residents. Participants reporting higher frequency of fast food consumption (≥2 times vs. <2 times per week) were more likely to be obese (OR = 1.35, p = 0.06). Conclusion: This study indicates that neighborhood-level economic hardship is associated with an unfavorable retail food environment. However inconsistent or non-significant relationships between the retail food environment, fast food consumption, and obesity were observed. More research is needed to enhance methodological approaches to assess the retail food environment and to understand the complex relationship between neighborhood characteristics, health behaviors, and health outcomes

    Excitation by Axon Terminal GABA Spillover in a Sound Localization Circuit

    Get PDF
    Synapses from neurons of the medial nucleus of the trapezoid body (MNTB) onto neurons of the lateral superior olive (LSO) in the auditory brainstem are glycinergic in maturity, but also GABAergic and glutamatergic in development. The role for this neurotransmitter cotransmission is poorly understood. Here we use electrophysiological recordings in brainstem slices from P3-P21 mice to demonstrate that GABA release evoked from MNTB axons can spill over to neighboring MNTB axons and cause excitation by activating GABAAR. This spillover excitation generates patterns of staggered neurotransmitter release from different MNTB axons resulting in characteristic “doublet” postsynaptic currents in LSO neurons. Postembedding immunogold labeling and electron microscopy provide evidence that GABAARs are localized at MNTB axon terminals. Photolytic uncaging of p-hydroxyphenacyl (pHP) GABA demonstrates backpropagation of GABAAR-mediated depolarizations from MNTB axon terminals to the soma, some hundreds of microns away. These somatic depolarizations enhanced somatic excitability by increasing the probability of action potential generation. GABA spillover excitation between MNTB axon terminals may entrain neighboring MNTB neurons, which may play a role in the developmental refinement of the MNTB-LSO pathway. Axonal spillover excitation persisted beyond the second postnatal week, suggesting that this mechanism may play a role in sound localization, by providing new avenues of communication between MNTB neurons via their distal axonal projections. SIGNIFICANCE STATEMENT In this study, a new mechanism of neuronal communication between auditory synapses in the mammalian sound localization pathway is described. Evidence is provided that the inhibitory neurotransmitter GABA can spill over between axon terminals to cause excitation of nearby synapses to further stimulate neurotransmitter release. Excitatory GABA spillover between inhibitory axon terminals may have important implications for the development and refinement of this auditory circuit and may play a role in the ability to precisely localize sound sources

    Short-communication: a comparison of the in vitro angiotensin-1-converting enzyme inhibitory capacity of dairy and plant protein supplements

    Get PDF
    The consumption of supplements based on dairy or plant proteins may be associated with bioactive potential, including angiotensin-1-converting enzyme inhibitory (ACE-1i) activity, which is linked with blood pressure reduction in vivo. To gain insight into this proposed mechanism, the ACE-1i potential of protein-based supplements, including a selection of dairy (n = 10) and plant (n = 5) proteins were in vitro digested. The total digest was filtered and permeate and retentate were obtained. ACE-1i activity was measured as the ability of proteins (pre-digestion, 'gastric', permeate, and retentate) to decrease the hydrolysis of furanacroloyl-Phe-Glu-Glu (FAPGG) substrate for the ACE-1 enzyme. Permeate and retentate of dairy proteins exerted a significantly higher ACE-1i activity (mean of 10 proteins: 27.05 ± 0.2% and 20.7 ± 0.2%, respectively) compared with pre-digestion dairy proteins (16.7 ± 0.3%). Plant protein exhibited high ACE-1i in 'gastric' and retentate fractions (mean of five proteins: 54.9 ± 0.6% and 35.7 ± 0.6%, respectively). The comparison of the in vitro ACE-1i activity of dairy and plant proteins could provide valuable knowledge regarding their specific bioactivities, which could inform their use in the formulation of specific functional supplements that would require testing for blood pressure control in human randomly-controlled studies

    Stress Response to Winter Warfare Training: Potential Impact of Location

    Get PDF
    Winter Warfare Training (WWT) is a critical component of military training to prepare individuals to move effectively in harsh conditions. Moving through snow and heavy terrain increases overall stress to the entire human system. PURPOSE: The purpose of this effort was to quantify the stress response during WWT to determine the level of physiological adaptation to extreme environments. METHODS: Mountain and mobility operators (age: 31.5±1.4 years; height: 71.1±0.5 inches; weight: 192.5±6.6 lbs.; body fat percentage: 18.0±5.0%) were recruited for this effort. Participants engaged in baseline laboratory metrics at their home station located in Colorado (CO) prior to WWT for one week in Montana (MT) and one week in Alaska (AK). WWT was separated by approximately one month. Blood was collected upon wake on the first and last day at each location. Plasma was analyzed for anabolic and stress-related hormones via enzyme-linked immunoassay (ELISA). RESULTS: Plasma adrenocorticotropic hormone (ACTH) levels increased from baseline to pre- (p=0.004), decreased from pre- to post-WWT in MT (p=0.004), and increased in from pre- to post-WWT in AK (p=0.005). Plasma cortisol levels decreased from pre- to post-WWT in MT (p=0.001) and, conversely, increased from pre- to post-WWT in AK (pCONCLUSION: The increase in stress-related hormones (i.e., ACTH and cortisol) exhibited throughout during WWT in AK suggest that operators experienced heightened physiological strain during WWT in AK compared to MT, despite similar training. We speculate that differences in sleep environment, changes in environmental temperature and terrain between MT and AK, and cumulative training load may have exacerbated the overall physiological strain on the operators
    corecore