14 research outputs found

    PB.23: Effect of detector type on cancer detection in digital mammography

    Get PDF
    This work measured the effect that image quality associated with different detectors has on cancer detection in mammography using a novel method for changing the appearance of images.\ud \ud A set of 270 mammography cases (one view, both breasts) was acquired using five Hologic Selenias and two Hologic Dimensions X-ray units: 80 normal, 80 with simulated inserted subtle calcification clusters, 80 with subtle real noncalcification malignant lesions and 30 with benign lesions (biopsy proven). These 270 cases (Arm 1) were converted to appear as if they had been acquired on two other imaging systems: needle image plate computed radiography (CR) (Arm 2) and powder phosphor CR (Arm 3). Three experienced mammography readers marked the location of suspected cancers in the images and classified whether each lesion would require further investigation and the confidence in that decision. Performance was calculated as the area under curve (AUC) of the alternative free-response receiver operating characteristic curv

    Impact of digital mammography on cancer detection and recall rates: 11.3 million screening episodes in the English National Health Service Breast Cancer Screening Program

    No full text
    Purpose: To report the impact of changing from screen-film mammography to digital mammography (DM) in a large organized national screening program.Materials and Methods: A retrospective analysis of prospectively collected annual screening data from 2009–2010 to 2015–2016 for the 80 facilities of the English National Health Service Breast Cancer Screening Program, together with estimates of DM usage for three time periods, enabled the effect of DM to be measured in a study of 11.3 million screening episodes in women aged 45–70 years (mean age, 59 years). Regression models were used to estimate percentage and absolute change in detection rates due to DM.Results: The overall cancer detection rate was 14% greater with DM (P &lt; .001). There were higher rates of detection of grade 1 and 2 invasive cancers (both ductal and lobular), but no change in the detection of grade 3 invasive cancers. The recall rate was almost unchanged by the introduction of DM. At prevalent (first) screening episodes for women aged 45–52 years, DM increased the overall detection rate by 19% (P &lt; .001) and for incident screening episodes in women aged 53–70 years by 13% (P &lt; .001).Conclusion: The overall cancer detection rate was 14% greater with digital mammography with no change in recall rates and without confounding by changes in other factors. There was a substantially higher detection of grade 1 and grade 2 invasive cancers, including both ductal and lobular cancers, but no change in the detection of grade 3 invasive cancers.</br

    Design and validation of realistic breast models for use in multiple alternative forced choice virtual clinical trials

    No full text
    A novel method has been developed for generating quasi-realistic voxel phantoms which simulate the compressed breast in mammography and digital breast tomosynthesis (DBT). The models are suitable for use in virtual clinical trials requiring realistic anatomy which use the multiple alternative forced choice (AFC) paradigm and patches from the complete breast image. The breast models are produced by extracting features of breast tissue components from DBT clinical images including skin, adipose and fibro-glandular tissue, blood vessels and Cooper’s ligaments. A range of different breast models can then be generated by combining these components. Visual realism was validated using a receiver operating characteristic (ROC) study of patches from simulated images calculated using the breast models and from real patient images. Quantitative analysis was undertaken using fractal dimension and power spectrum analysis. The average areas under the ROC curves for 2D and DBT images were 0.51 ± 0.06 and 0.54 ± 0.09 demonstrating that simulated and real images were statistically indistinguishable by expert breast readers (7 observers); errors represented as one standard error of the mean. The average fractal dimensions (2D, DBT) for real and simulated images were (2.72 ± 0.01, 2.75 ± 0.01) and (2.77 ± 0.03, 2.82 ± 0.04) respectively; errors represented as one standard error of the mean. Excellent agreement was found between power spectrum curves of real and simulated images, with average β values (2D, DBT) of (3.10 ± 0.17, 3.21 ± 0.11) and (3.01 ± 0.32, 3.19 ± 0.07) respectively; errors represented as one standard error of the mean. These results demonstrate that radiological images of these breast models realistically represent the complexity of real breast structures and can be used to simulate patches from mammograms and DBT images that are indistinguishable from patches from the corresponding real breast images. The method can generate about 500 radiological patches (~30mm × 30mm) per day for AFC experiments on a single workstation. This is the first study to quantitatively validate the realism of simulated radiological breast images using direct blinded comparison with real data via the ROC paradigm with expert breast reader

    Design and validation of realistic breast models for use in multiple alternative forced choice virtual clinical trials

    Get PDF
    A novel method has been developed for generating quasi-realistic voxel phantoms which simulate the compressed breast in mammography and digital breast tomosynthesis (DBT). The models are suitable for use in virtual clinical trials requiring realistic anatomy which use the multiple alternative forced choice (AFC) paradigm and patches from the complete breast image. The breast models are produced by extracting features of breast tissue components from DBT clinical images including skin, adipose and fibro-glandular tissue, blood vessels and Cooper’s ligaments. A range of different breast models can then be generated by combining these components. Visual realism was validated using a receiver operating characteristic (ROC) study of patches from simulated images calculated using the breast models and from real patient images. Quantitative analysis was undertaken using fractal dimension and power spectrum analysis. The average areas under the ROC curves for 2D and DBT images were 0.51 ± 0.06 and 0.54 ± 0.09 demonstrating that simulated and real images were statistically indistinguishable by expert breast readers (7 observers); errors represented as one standard error of the mean. The average fractal dimensions (2D, DBT) for real and simulated images were (2.72 ± 0.01, 2.75 ± 0.01) and (2.77 ± 0.03, 2.82 ± 0.04) respectively; errors represented as one standard error of the mean. Excellent agreement was found between power spectrum curves of real and simulated images, with average β values (2D, DBT) of (3.10 ± 0.17, 3.21 ± 0.11) and (3.01 ± 0.32, 3.19 ± 0.07) respectively; errors represented as one standard error of the mean. These results demonstrate that radiological images of these breast models realistically represent the complexity of real breast structures and can be used to simulate patches from mammograms and DBT images that are indistinguishable from patches from the corresponding real breast images. The method can generate about 500 radiological patches (~30mm × 30mm) per day for AFC experiments on a single workstation. This is the first study to quantitatively validate the realism of simulated radiological breast images using direct blinded comparison with real data via the ROC paradigm with expert breast reader
    corecore