3,314 research outputs found

    Proton recoil polarization in exclusive (e,e'pp) reactions

    Full text link
    The general formalism of nucleon recoil polarization in the (e⃗,eâ€ČN⃗N{\vec e},e'{\vec N}N) reaction is given. Numerical predictions are presented for the components of the outgoing proton polarization and of the polarization transfer coefficient in the specific case of the exclusive 16^{16}O(e⃗,eâ€Čp⃗p{\vec e},e'{\vec p}p)14^{14}C knockout reaction leading to discrete states in the residual nucleus. Reaction calculations are performed in a direct knockout framework where final-state interactions and one-body and two-body currents are included. The two-nucleon overlap integrals are obtained from a calculation of the two-proton spectral function of 16^{16}O where long-range and short-range correlations are consistently included. The comparison of results obtained in different kinematics confirms that resolution of different final states in the 16^{16}O(e⃗,eâ€Čp⃗p{\vec e},e'{\vec p}p)14^{14}C reaction may act as a filter to disentangle and separately investigate the reaction processes due to short-range correlations and two-body currents and indicates that measurements of the components of the outgoing proton polarization may offer good opportunities to study short-range correlations.Comment: 12 pages, 6 figure

    Short-range and tensor correlations in the 16^{16}O(e,eâ€Č'pn) reaction

    Get PDF
    The cross sections for electron induced two-nucleon knockout reactions are evaluated for the example of the 16^{16}O(e,eâ€Č'pn)14^{14}N reaction leading to discrete states in the residual nucleus 14^{14}N. These calculations account for the effects of nucleon-nucleon correlations and include the contributions of two-body meson exchange currents as the pion seagull, pion in flight and the isobar current contribution. The effects of short-range as well as tensor correlations are calculated within the framework of the coupled cluster method employing the Argonne V14 potential as a model for a realistic nucleon-nucleon interaction. The relative importance of correlation effects as compared to the contribution of the meson exchange currents depends on the final state of the residual nucleus. The cross section leading to specific states, like e.g. the ground state of 14^{14}N, is rather sensitive to the details of the correlated wave function.Comment: 16 pages, 9 figures include

    Variable-order fractional calculus: A change of perspective

    Get PDF
    Several approaches to the formulation of a fractional theory of calculus of “variable order” have appeared in the literature over the years. Unfortunately, most of these proposals lack a rigorous mathematical framework. We consider an alternative view on the problem, originally proposed by G. Scarpi in the early seventies, based on a naive modification of the representation in the Laplace domain of standard kernels functions involved in (constant-order) fractional calculus. We frame Scarpi's ideas within recent theory of General Fractional Derivatives and Integrals, that mostly rely on the Sonine condition, and investigate the main properties of the emerging variable-order operators. Then, taking advantage of powerful and easy-to-use numerical methods for the inversion of Laplace transforms of functions defined in the Laplace domain, we discuss some practical applications of the variable-order Scarpi integral and derivative

    Knockout of proton-neutron pairs from 16^{16}O with electromagnetic probes

    Get PDF
    After recent improvements to the Pavia model of two-nucleon knockout from 16^{16}O with electromagnetic probes the calculated cross sections are compared to experimental data from such reactions. Comparison with data from a measurement of the 16^{16}O(e,eâ€Č'pn) reaction show much better agreement between experiment and theory than was previously observed. In a comparison with recent data from a measurement of the 16^{16}O(Îł\gamma,pn) reaction the model over-predicts the measured cross section at low missing momentum.Comment: 6 pages, 5 figure

    Final State Interaction in Exclusive (e,eâ€ČNN)(e,e'NN) Reactions

    Get PDF
    Contributions of nucleon-nucleon (NN) correlations, meson exchange currents and the residual final state interactions (FSI) on exclusive two-nucleon knock-out reactions induced by electron scattering are investigated. All contributions are derived from the same realistic meson exchange model for the NN interaction. Effects of correlations and FSI are determined in a consistent way by solving the NN scattering equation, the Bethe-Goldstone equation, for two nucleons in nuclear matter. One finds that the FSI re-scattering terms are non-negligible even if the two nucleons are emitted back to back.Comment: 8 pages, 5 figure

    f_K/f_pi in Full QCD with Domain Wall Valence Quarks

    Get PDF
    We compute the ratio of pseudoscalar decay constants f_K/f_pi using domain-wall valence quarks and rooted improved Kogut-Susskind sea quarks. By employing continuum chiral perturbation theory, we extract the Gasser-Leutwyler low-energy constant L_5, and extrapolate f_K/f_pi to the physical point. We find: f_K/f_pi = 1.218 (+- 0.002) (+0.011 -0.024) where the first error is statistical and the second error is an estimate of the systematic due to chiral extrapolation and fitting procedures. This value agrees within the uncertainties with the determination by the MILC collaboration, calculated using Kogut-Susskind valence quarks, indicating that systematic errors arising from the choice of lattice valence quark are small.Comment: 14 pages, 9 figure

    Two-nucleon emission in the longitudinal response

    Get PDF
    The contribution of the two-nucleon emission in the longitudinal response for inclusive electron scattering reactions is studied. The model adopted to perform the calculations is based upon Correlated Basis Function theory but it considers only first order terms in the correlation function. The proper normalization of the wave function is ensured by considering, in addition to the usually evaluated two-point diagrams, also the three-point diagrams. Results for the 12C nucleus in the quasi-elastic region are presented.Comment: 7 pages, 4 Postscript figure

    A Study of the 't Hooft Model with the Overlap Dirac Operator

    Get PDF
    We present the results of an exploratory numerical study of two dimensional QCD with overlap fermions. We have performed extensive simulations for U(N_c) and SU(N_c) color groups with N_c=2, 3, 4 and coupling constants chosen to satisfy the 't Hooft condition g^2 N_c =const=4/3. We have computed the meson spectrum and decay constants, the topological susceptibility and the chiral condensate. For U(N_c) gauge groups, our results indicate that the Witten-Veneziano relation is satisfied within our statistical errors and that the chiral condensate for N_f=1 is compatible with a non-zero value. Our results exhibit universality in N_c and confirm once more the excellent chiral properties of the overlap-Dirac operator.Comment: 18 pages, 4 figure

    Two-proton overlap functions in the Jastrow correlation method and cross section of the 16^{16}O(e,eâ€Čpp)14(e,e^{\prime}pp)^{14}Cg.s._{\rm g.s.} reaction

    Full text link
    Using the relationship between the two-particle overlap functions (TOF's) and the two-body density matrix (TDM), the TOF's for the 16^{16}O(e,eâ€Čpp)14(e,e^{\prime}pp)^{14}Cg.s._{\rm g.s.} reaction are calculated on the basis of a TDM obtained within the Jastrow correlation method. The main contributions of the removal of 1S0^1S_0 and 3P1^3P_1 pppp pairs from 16^{16}O are considered in the calculation of the cross section of the 16^{16}O(e,eâ€Čpp)14(e,e^{\prime}pp)^{14}Cg.s._{\rm g.s.} reaction using the Jastrow TOF's which include short-range correlations (SRC). The results are compared with the cross sections calculated with different theoretical treatments of the TOF's.Comment: 10 pages, 8 figures, ReVTeX

    The AMS-02 Time of Flight System. Final Design

    Full text link
    The AMS-02 detector is a superconducting magnetic spectrometer that will operate on the International Space Station. The time of flight (TOF) system of AMS-02 is composed by four scintillator planes with 8, 8, 10, 8 counters each, read at both ends by a total of 144 phototubes. This paper describes the new design, the expected performances, and shows preliminary results of the ion beam test carried on at CERN on October 2002.Comment: 4 pages, 6 EPS figures. Proc. of the 28th ICRC (2003
    • 

    corecore