3 research outputs found

    Sotatercept safety and effects on hemoglobin, bone, and vascular calcification

    Get PDF
    Introduction: Patients with end-stage kidney disease (ESKD) exhibit anemia, chronic kidney disease‒mineral bone disorder (CKD-MBD), and cardiovascular disease. The REN-001 and REN-002 phase II, multicenter, randomized studies examined safety, tolerability, and effects of sotatercept, an ActRIIA-IgG1 fusion protein trap, on hemoglobin concentration; REN-001 also explored effects on bone mineral density (BMD) and abdominal aortic vascular calcification. Methods: Forty-three patients were treated in REN-001 (dose range: sotatercept 0.3‒0.7 mg/kg or placebo subcutaneously [s.c.] for 200 days) and 50 in REN-002 (dose range: 0.1‒0.4 mg/kg i.v. and 0.13‒0.5 mg/kg s.c. for 99 days). Results: In REN-001, frequency of achieving target hemoglobin response (\u3e10 g/dl [6.21 mmol/l]) with sotatercept was dose-related and greater than placebo (0.3 mg/kg: 33.3%; 0.5 mg/kg: 62.5%; 0.7 mg/kg: 77.8%; 0.7 mg/kg [doses 1 and 2]/0.4 mg/kg [doses 3‒15]: 33.3%; placebo: 27.3%). REN-002 hemoglobin findings were similar (i.v.: 16.7%-57.1%; s.c.: 11.1%‒42.9%). Dose-related achievement of ≥2% increase in femoral neck cortical BMD was seen among only REN-001 patients receiving sotatercept (0.3‒0.7 mg/kg: 20.0%‒57.1%; placebo: 0.0%). Abdominal aortic vascular calcification was slowed in a dose-related manner, with a ≤15% increase in Agatston score achieved by more REN-001 sotatercept versus placebo patients (60%‒100% vs. 16.7%). The most common adverse events during treatment were hypertension, muscle spasm, headache, arteriovenous fistula site complication, and influenza observed in both treatment and placebo groups. Conclusion: In patients with ESKD, sotatercept exhibited a favorable safety profile and was associated with trends in dose-related slowing of vascular calcification. Less-consistent trends in improved hemoglobin concentration and BMD were observed

    Luspatercept for the treatment of anaemia in non-transfusion-dependent β-thalassaemia (BEYOND): a phase 2, randomised, double-blind, multicentre, placebo-controlled trial

    No full text
    Background In patients with non-transfusion-dependent beta-thalassaemia, haemoglobin concentrations lower than 10 g/dL are associated with a higher risk of morbidity, mortality, and impaired quality of life. No drugs are specifically approved for anaemia management in patients with non-transfusion-dependent beta-thalassaemia, other than transfusion therapy administered infrequently in accordance with patients' needs. We assessed the efficacy and safety of luspatercept versus placebo in patients with non-transfusion-dependent beta-thalassaemia.Methods We did a phase 2, randomised, double-blind, multicentre, placebo-controlled trial in 12 centres in six countries (Thailand [n=1], Lebanon [n=1], Greece [n=2], Italy [n=5], the UK [n=1], and the USA [n=2]). Eligible patients were aged 18 years or older, had confirmed diagnosis of beta-thalassaemia or haemoglobin E/beta-thalassaemia (concomitant a-globin deletion, mutation, or duplication were allowed), and a baseline haemoglobin concentration of 10.0 g/dL or lower. All patients were non-transfusion-dependent. Patients were randomly assigned (2:1) to luspatercept or placebo using an interactive response technology system and stratified by baseline haemoglobin concentration (>= 8.5 g/dL vs <8.5 g/dL) and baseline Non-Transfusion-Dependent beta-thalassaemia-Patient-Reported Outcome Tiredness/Weakness domain score (>= 3 vs <3). All patients, study site staff, and sponsor representatives (who reviewed the data), except for designated individuals, were masked to drug assignment until the time the study was unblinded. Luspatercept or placebo was given once subcutaneously every 3 weeks for 48 weeks in the double-blind treatment period. Luspatercept was started at 1.0 mg/kg with titration up to 1.25 mg/kg, or reduction in the event of toxicity or excessive haemoglobin concentration increase. The primary endpoint was achievement of an increase from baseline of 1.0 g/dL or higher in mean haemoglobin concentration over a continuous 12-week interval during weeks 13-24, in the absence of transfusions. The primary efficacy and safety analyses were done in the intention-to-treat population. This trial is registered at ClinicalTrials.gov, NCT03342404, and is ongoing.Findings Between Feb 5, 2018, and Oct 14, 2019, 160 patients were screened for eligiblity, of whom 145 were randomly assigned to luspatercept (n=96) or placebo (n=49). 82 (57%) patients were female and 63 (43%) were male. 44 (30%) patients were Asian, 87 (60%) were White, and 14 (10%) identified as another race. The study met its primary endpoint: 74 (77%) of 96 patients in the luspatercept group and none in the placebo group had an increase of at least 1.0 g/dL in haemoglobin concentration (common risk difference 77.1 [95% CI 68.7-85.5]; p<0.0001). The proportion of patients with serious adverse events was lower in the luspatercept group than in the placebo group (11 [12%] vs 12 [25%]). Treatment-emergent adverse events most commonly reported with luspatercept were bone pain (35 [37%]), headache (29 [30%]), and arthralgia (28 [29%]). No thromboembolic events or deaths were reported during the study.Interpretation Luspatercept represents a potential treatment for adult patients with non-transfusion-dependent beta-thalassaemia, for whom effective approved treatment options are scarce. Copyright (C) 2022 Published by Elsevier Ltd. All rights reserved
    corecore