528 research outputs found

    P/CAF-mediated spermidine acetylation regulates histone acetyltransferase activity

    Get PDF
    Histones and polyamines are important determinants of the chromatin structure. Histones form the core of nucleosome particles and their modification by acetylation of N-terminal tails is involved in chromatin structural changes and transcriptional regulation. Polyamines, including spermidine, are also targets of both cytoplasmic and nuclear acetylation, which in turn alters their affinity for DNA and nucleosomes. Previous studies report the interplay between polyamines metabolism and levels of histone acetylation, but the molecular basis of this effect is still unclear. In this work, we have analyzed the in vitro effect of spermidine on histone H3 acetylation catalyzed by P/CAF, a highly conserved histone acetyltransferase (HAT) (E.C. 2.3.1.48). We have observed that spermidine at very low concentrations activates P/CAF, while it has an inhibitory effect at concentrations higher than 4 μM. In addition, the in vitro bimodal effect of spermidine on histone H3 acetylation was also distinctly observed in vivo on polytene chromosomes of Drosophila melanogaster. We also performed kinetic studies indicating that the activating effect of low spermidine concentrations on P/CAF-HAT activity is based on its involvement as a substrate for P/CAF to produce

    Labeling and exocytosis of secretory compartments in RBL mastocytes by polystyrene and mesoporous silica nanoparticles

    Get PDF
    Maneerat Ekkapongpisit1,*, Antonino Giovia1,*, Giuseppina Nicotra1, Matteo Ozzano1, Giuseppe Caputo2,3, Ciro Isidoro1 1Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; 2Department of Chemistry, University of Turin, Turin, 3Cyanine Technology SpA, Torino, Italy *These authors contributed equally to this workBackground: For a safe ‘in vivo’ biomedical utilization of nanoparticles, it is essential to assess not only biocompatibility, but also the potential to trigger unwanted side effects at both cellular and tissue levels. Mastocytes (cells having secretory granules containing cytokines, vasoactive amine, and proteases) play a pivotal role in the immune and inflammatory responses against exogenous toxins. Mastocytes are also recruited in the tumor stroma and are involved in tumor vascularization and growth.Aim and methods: In this work, mastocyte-like rat basophilic leukemia (RBL) cells were used to investigate whether carboxyl-modified 30 nm polystyrene (PS) nanoparticles (NPs) and naked mesoporous silica (MPS) 10 nm NPs are able to label the secretory inflammatory granules, and possibly induce exocytosis of these granules. Uptake, cellular retention and localization of fluorescent NPs were analyzed by cytofluorometry and microscope imaging.Results: Our findings were that: (1) secretory granules of mastocytes are accessible by NPs via endocytosis; (2) PS and MPS silica NPs label two distinct subpopulations of inflammatory granules in RBL mastocytes; and (3) PS NPs induce calcium-dependent exocytosis of inflammatory granules.Conclusion: These findings highlight the value of NPs for live imaging of inflammatory processes, and also have important implications for the clinical use of PS-based NPs, due to their potential to trigger the unwanted activation of mastocytes.Keywords: secretory lysosomes, inflammation, nanoparticles, vesicular traffi

    Functionalized Carbon Nanoparticle-Based Sensors for Chemical Warfare Agents

    Get PDF
    Real-time sensing of chemical warfare agents (CWAs) is, today, a crucial topic to prevent lethal effects of a chemical terroristic attack. For this reason, the development of efficient, selective, ..

    Thymus vulgaris Essential Oil and Hydro-Alcoholic Solutions to Counteract Wooden Artwork Microbial Colonization

    Get PDF
    Aromatic plants represent a source of natural products with medicinal properties, and are also utilized in the food and pharmaceutical industries. Recently, the need for eco-compatible and non-toxic products, safe for both the environment and human health, have been proposed for the sustainable conservation of historic–artistic artifacts. In this study, in order to counteract microbial colonization (Aspergillus sp., Streptomyces sp., Micrococcus sp.) on wooden artwork surfaces, Thymus vulgaris L. (Lamiaceae) essential oil (EO) and hydro-alcoholic (HA) solutions were applied in a polyphasic approach. The antimicrobial activities of EO and HA solutions were preliminarily assessed by agar disc diffusion (ADD) and well plate diffusion (WPD) in vitro methods, defining the specific concentration useful for bacterial and fungal genera, identified by optical microscopies, in vitro cultures (nutrient or Sabouraud agar), and DNA base molecular biology investigations. Specifically, the microbial patina was directly removed by a hydro-alcoholic solution (while evaluating the potential colorimetric change of the artwork’s surface) combined with exposure to EO volatile compounds, performed in a dedicated “clean chamber”. This study proposes, for the first time, the combined use of two plant extracts to counteract microbial development on wooden artworks, providing supplementary information on these products as bio-agents

    Circuiti di automazione e controllo remoto per la cupola del telescopio APT2

    Get PDF
    Circuiti di automazione e controllo remoto per la cupola del telescopio APT2 Criteri di progetto, schemi elettrici e manuale di manutenzione e verific

    Definition of the Chalcogen Bond (IUPAC Recommendations 2019)

    Get PDF
    This recommendation proposes a definition for the term “chalcogen bond”; it is recommended the term is used to designate the specific subset of inter- and intramolecular interactions formed by chalcogen atoms wherein the Group 16 element is the electrophilic site
    corecore