13,395 research outputs found
The Structure and Dynamical Evolution of Dark Matter Halos
(Shortened) We use N-body simulations to investigate the structure and
dynamical evolution of dark matter halos in galaxy clusters. Our sample
consists of nine massive halos from an EdS universe with scale free power
spectrum and n = -1. Halos are resolved by ~20000 particles each, with a
dynamical resolution of 20-25 kpc. Large scale tidal fields are included up to
L=150 Mpc using background particles. The halo formation process can be
characterized by the alternation of two dynamical configurations: a merging
phase and a relaxation phase, defined by their signature on the evolution of
the total mass and rms velocity. Halos spend on average one 1/3 of their
evolution in the merging phase and 2/3 in the relaxation phase. Using this
definition, we study the density profiles and their change during the halo
history. The average density profiles are fitted by the NFW analytical model
with an rms residual of 17% between the virial radius Rv and 0.01 Rv. The
Hernquist (1990) profiles fits the same halos with an rms residual of 26%. The
trend with mass of the scale radius of these fits is marginally consistent with
that found by Cole & Lacey (1996): in comparison our halos are more centrally
concentrated, and the relation between scale radius and halo mass is slightly
steeper. We find a moderately large scatter in this relation, due both to
dynamical evolution within halos and to fluctuations in the halo population. We
analyze the dynamical equilibrium of our halos using the Jeans' equation, and
find that on average they are approximately in equilibrium within their virial
radius. Finally, we find that the projected mass profiles of our simulated
halos are in very good agreement with the profiles of three rich galaxy
clusters derived from strong and weak gravitational lensing observations.Comment: 20 pages, Latex, with all figures included. Modified to match the
published versio
Estimation of the methane emission factor for the Italian Mediterranean buffalo
In order to contribute to the improvement of the national greenhouse gas emission inventory, this work aimed at estimating a country-specific enteric methane (CH4) emission factor for the Italian Mediterranean buffalo. For this purpose, national agriculture statistics, and information on animal production and farming conditions were analysed, and the emission factor was estimated using the Tier 2 model of the Intergovernmental Panel on Climate Change. Country-specific CH4 emission factors for buffalo cows (630 kg body weight, BW) and other buffalo (313 kg BW) categories were estimated for the period 1990–2004. In 2004, the estimated enteric CH4 emission factor for the buffalo cows was 73 kg/head per year, whereas that for other buffalo categories it was 56 kg/head per year. Research in order to determine specific CH4 conversion rates at the predominant production system is suggested
The quantum correlation between the selection of the problem and that of the solution sheds light on the mechanism of the quantum speed up
In classical problem solving, there is of course correlation between the
selection of the problem on the part of Bob (the problem setter) and that of
the solution on the part of Alice (the problem solver). In quantum problem
solving, this correlation becomes quantum. This means that Alice contributes to
selecting 50% of the information that specifies the problem. As the solution is
a function of the problem, this gives to Alice advanced knowledge of 50% of the
information that specifies the solution. Both the quadratic and exponential
speed ups are explained by the fact that quantum algorithms start from this
advanced knowledge.Comment: Earlier version submitted to QIP 2011. Further clarified section 1,
"Outline of the argument", submitted to Phys Rev A, 16 page
Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane
We study the quantum dynamics of the cavity optomechanical system formed by a
Fabry-Perot cavity with a thin vibrating membrane at its center. We first
derive the general multimode Hamiltonian describing the radiation pressure
interaction between the cavity modes and the vibrational modes of the membrane.
We then restrict the analysis to the standard case of a single cavity mode
interacting with a single mechanical resonator and we determine to what extent
optical absorption by the membrane hinder reaching a quantum regime for the
cavity-membrane system. We show that membrane absorption does not pose serious
limitations and that one can simultaneously achieve ground state cooling of a
vibrational mode of the membrane and stationary optomechanical entanglement
with state-of-the-art apparatuses.Comment: 14 pages, 7 figure
Coherent Detection of Ultra-weak Electromagnetic Fields
We explore the application of heterodyne interferometry for a weak-field
coherent detection scheme. The methods detailed here will be used in ALPS II,
an experiment designed to search for weakly-interacting, sub-eV particles. For
ALPS II to reach its design sensitivity this detection system must be capable
of accurately measuring fields with equivalent amplitudes on the order of
10 photons per second or greater. We present initial results of an
equivalent dark count rate on the order of photons per second as well
as successful generation and detection of a signal with a field strength
equivalent to photons per second
Sensitivity-bandwidth limit in a multi-mode opto-electro-mechanical transducer
An opto--electro--mechanical system formed by a nanomembrane capacitively
coupled to an LC resonator and to an optical interferometer has been recently
employed for the high--sensitive optical readout of radio frequency (RF)
signals [T. Bagci, \emph{et~al.}, Nature {\bf 507}, 81 (2013)]. Here we propose
and experimentally demonstrate how the bandwidth of such kind of transducer can
be increased by controlling the interference between two--electromechanical
interaction pathways of a two--mode mechanical system. With a
proof--of--principle device \new{operating at room temperature, we achieve a
sensitivity of 300 nV/Hz^(1/2) over a bandwidth of 15 kHz in the presence of
radiofrequency noise, and an optimal shot-noise limited sensitivity of 10
nV/Hz^(1/2) over a bandwidth of 5 kHz. We discuss strategies for improving the
performance of the device, showing that, for the same given sensitivity, a
mechanical multi--mode transducer can achieve a bandwidth} significantly larger
than that of a single-mode one
Proximity Drawings of High-Degree Trees
A drawing of a given (abstract) tree that is a minimum spanning tree of the
vertex set is considered aesthetically pleasing. However, such a drawing can
only exist if the tree has maximum degree at most 6. What can be said for trees
of higher degree? We approach this question by supposing that a partition or
covering of the tree by subtrees of bounded degree is given. Then we show that
if the partition or covering satisfies some natural properties, then there is a
drawing of the entire tree such that each of the given subtrees is drawn as a
minimum spanning tree of its vertex set
Optomechanical sideband cooling of a thin membrane within a cavity
We present an experimental study of dynamical back-action cooling of the
fundamental vibrational mode of a thin semitransparent membrane placed within a
high-finesse optical cavity. We study how the radiation pressure interaction
modifies the mechanical response of the vibrational mode, and the experimental
results are in agreement with a Langevin equation description of the coupled
dynamics. The experiments are carried out in the resolved sideband regime, and
we have observed cooling by a factor 350 We have also observed the mechanical
frequency shift associated with the quadratic term in the expansion of the
cavity mode frequency versus the effective membrane position, which is
typically negligible in other cavity optomechanical devices.Comment: 15 pages, 7 figure
Lichen amyloidosus: a new therapeutic approach.
The result of topical treatment by dimethyl sulphoxide (DMSO) in a patient with lichen amyloidosus is reported. Itching improved within five days of therapy. Remarkable flattening of the papules was obtained within two weeks. The clinical result was confirmed by histological examination which revealed partially disappearance of amyloid deposits
- …
