19 research outputs found

    Follow-up after bariatric surgery: is it time to tailor it? Analysis of early predictive factors of 3-year weight loss predictors of unsuccess in bariatric patients

    Get PDF
    Bariatric surgery (BS) is the most effective treatment strategy for obesity. Nevertheless, a subset of patients does not reach a successful weight loss or experience long-term weight regain. Conflicting evidence exists regarding predictors of BS outcomes. We aimed to define the early factors linked to 3 year unsuccessful weight loss in order to promote a tailored close follow-up. We enrolled 443 patients who underwent BS from January 2014 to December 2018 with a 3 year follow-up. An unsuccessful BS outcome was defined as a percentage of total weight loss (%TWL) <20. We compared the characteristics between successful and unsuccessful patients in order to identify predictor factors of unsuccess after surgery. We found that the proportion of patients with unsuccessful weight loss progressively increased from one to three years after BS. In a multiple regression model, only 1 month %TWL and sleeve gastrectomy (SG) were significantly associated with 3 year unsuccessful weight loss. We stratified our cohort in four groups according to the risk of BS unsuccess, in terms of 1 month %TWL and type of surgery (SG vs gastric bypass). Interestingly, groups showed a significant difference in terms of %TWL at each follow-up point. Patients submitted to SG with lower 1 month %TWL must be considered at higher risk of future weight regain; consequently, they require a tailored and closer follow-up.[GRAPHICS]. © 2022, The Author(s)

    PMCA-based detection of prions in the olfactory mucosa of patients with Sporadic Creutzfeldt-Jakob Disease

    Get PDF
    Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder caused by the conformational conversion of the prion protein (PrPC) into an abnormally folded form, named prion (or PrPSc). The combination of the polymorphism at codon 129 of the PrP gene (coding either methionine or valine) with the biochemical feature of the proteinase-K resistant PrP (generating either PrPSc type 1 or 2) gives rise to different PrPSc strains, which cause variable phenotypes of sCJD. The definitive diagnosis of sCJD and its classification can be achieved only post-mortem after PrPSc identification and characterization in the brain. By exploiting the Real-Time Quaking-Induced Conversion (RT-QuIC) assay, traces of PrPSc were found in the olfactory mucosa (OM) of sCJD patients, thus demonstrating that PrPSc is not confined to the brain. Here, we have optimized another technique, named protein misfolding cyclic amplification (PMCA) for detecting PrPSc in OM samples of sCJD patients. OM samples were collected from 27 sCJD and 2 genetic CJD patients (E200K). Samples from 34 patients with other neurodegenerative disorders were included as controls. Brains were collected from 26 sCJD patients and 16 of them underwent OM collection. Brain and OM samples were subjected to PMCA using the brains of transgenic mice expressing human PrPC with methionine at codon 129 as reaction substrates. The amplified products were analyzed by Western blot after proteinase K digestion. Quantitative PMCA was performed to estimate PrPSc concentration in OM. PMCA enabled the detection of prions in OM samples with 79.3% sensitivity and 100% specificity. Except for a few cases, a predominant type 1 PrPSc was generated, regardless of the tissues analyzed. Notably, all amplified PrPSc were less resistant to PK compared to the original strain. In conclusion, although the optimized PMCA did not consent to recognize sCJD subtypes from the analysis of OM collected from living patients, it enabled us to estimate for the first time the amount of prions accumulating in this biological tissue. Further assay optimizations are needed to faithfully amplify peripheral prions whose recognition could lead to a better diagnosis and selection of patients for future clinical trials

    First in class pdz1 targeting NHERF1 inhibitors as anticancer agents

    No full text
    NHERF1 (Na+/H+ exchanger 3 regulating factor 1) is an integral membrane adaptor protein carrying two NH2-terminal PDZ (postsynaptic density 95/discs large/zona occludens 1) tandem domains. PDZ1 and PDZ2 bind to specific carboxyl-terminal motifs on target proteins, such as beta-catenin and PTEN, that may have a pivotal role in tumorigenesis. A pharmacophore model was used to filter out an in-house training set of about 6000 compounds, leading to identify a potent inhibitor of NHERF1. We herein report the design and synthesis of new NHERF1 inhibitors. Compounds 5, 9, 10 and 13 exhibited a remarkable cytotoxicity in Ls174Tshbeta-Cat cells. The binding to NHERF1 PDZ was confirmed by means of a dansylated peptide corresponding to the C-terminal sequence of beta2-AR. When used in combination with antagonists of beta-catenin, the new derivatives increased the apoptotic death of colorectal cancer cells refractory to currently available Wnt/beta-catenin-targeted agents

    Secondary Protein Aggregates in Neurodegenerative Diseases: Almost the Rule Rather than the Exception

    No full text
    The presence of protein aggregates is a hallmark of many neurodegenerative diseases, including Parkinson’s disease (PD), Alzheimer’s disease (AD), and frontotemporal lobar degeneration (FTLD). Traditionally, each disease has been associated with the aggregation of specific proteins, which serve as disease-specific biomarkers. For example, aggregates of α-synuclein (α-syn) are found in α-synucleinopathies such as PD, dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Similarly, AD is characterized by aggregates of amyloid-beta (Aβ) and tau proteins. However, it has been observed that these protein aggregates can also occur in other neurodegenerative diseases, contributing to disease progression. For instance, α-syn aggregates have been detected in AD, Down syndrome, Huntington’s disease, prion diseases, and various forms of FTLD. Similarly, Aβ aggregates have been found in conditions like DLB and PD. Tau aggregates, in addition to being present in primary tauopathies, have been identified in prion diseases, α-synucleinopathies, and cognitively healthy aged subjects. Finally, aggregates of TDP-43, typically associated with FTLD and amyotrophic lateral sclerosis (ALS), have been observed in AD, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), MSA, DLB, and other neurodegenerative diseases. These findings highlight the complexity of protein aggregation in neurodegeneration and suggest potential interactions and common mechanisms underlying different diseases. A deeper understating of this complex scenario may eventually lead to the identification of a better elucidation of the pathogenetic mechanisms of these devastating conditions and hopefully new therapeutic stragegies
    corecore