38 research outputs found

    Local electric field screening in bi-layer graphene devices

    Get PDF
    \ua9 2014 Panchal, Giusca, Lartsev, Yakimova and Kazakova. We present experimental studies of both local and macroscopic electrical effects in uniform single- (1LG) and bi-layer graphene (2LG) devices as well as in devices with non-uniform graphene coverage, under ambient conditions. DC transport measurements on sub-micron scale Hall bar devices were used to show a linear rise in carrier density with increasing 2LG coverage. Electrical scanning gate microscopy was used to locally top gate uniform and non-uniform devices in order to observe the effect of local electrical gating. We experimentally show a significant level of electric field screening by 2LG. We demonstrate that SGM technique is an extremely useful research tool for studies of local screening effects, which provides a complementary view on phenomena that are usually considered only within a macroscopic experimental scheme

    Excimer Laser Nanostructuring of Nickel Thin Films for the Catalytic Growth of Carbon Nanotubes

    Get PDF
    Pulse laser ablation and subsequent laser nanostructuring at room temperature has been employed to produce nanostructured Ni on SiO2/Si substrates for catalytic growth of carbon nanotubes. The resultant nanostructured surface is seen to consist of nanometer sized hemispherical droplets whose mean diameter is controlled by the initial metal thickness, which in turn is readily controlled by the number of laser pulses. Vertically aligned multiwall carbon nanotube mats were then grown using conventional plasma enhanced chemical vapor deposition. We show that within a single processing technique it is possible to produce the initial metal-on-oxide thin film to a chosen thickness but also to be able to alter the morphology of the film to desired specifications at low macroscopic temperatures using the laser parameters. The influence of the underlying oxide is also explored to explain the mechanism of nanostructuring of the Ni catalyst. (C) 2004 American Institute of Physics.</p

    Excimer laser nanostructuring of nickel thin films for the catalytic growth of carbon nanotubes

    No full text
    Pulse laser ablation and subsequent laser nanostructuring at room temperature has been employed to produce nanostructured Ni on SiO2/Si substrates for catalytic growth of carbon nanotubes. The resultant nanostructured surface is seen to consist of nanometer sized hemispherical droplets whose mean diameter is controlled by the initial metal thickness, which in turn is readily controlled by the number of laser pulses. Vertically aligned multiwall carbon nanotube mats were then grown using conventional plasma enhanced chemical vapor deposition. We show that within a single processing technique it is possible to produce the initial metal-on-oxide thin film to a chosen thickness but also to be able to alter the morphology of the film to desired specifications at low macroscopic temperatures using the laser parameters. The influence of the underlying oxide is also explored to explain the mechanism of nanostructuring of the Ni catalyst.</p
    corecore