117 research outputs found

    Gauge-Higgs Unification on Flat Space Revised

    Full text link
    Models with gauge-Higgs unification on a flat space are typically affected by common problems, the main of which are the prediction of a too small top and Higgs mass and a too low compactification scale. We show how, by breaking the SO(4,1) Lorentz symmetry in the bulk and introducing a Z_2 ``mirror'' symmetry, a potentially realistic model arises, in which all these problems are solved.Comment: 4 pages, 1 figure, to appear in Proceedings of SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 200

    The Electroweak Phase Transition in Models with Gauge-Higgs Unification

    Get PDF
    The dynamics of five dimensional Wilson line phases at finite temperature is studied in the one-loop approximation. We show that at temperatures of order T∌1/LT\sim 1/L, where L is the length of the compact space, the gauge symmetry is always restored and the electroweak phase transition appears to be of first order. We focus on a specific model where the Wilson line phase is identified with the Higgs field (gauge-Higgs unification). The transition is of first order even for values of the Higgs mass above the current experimental limit. If large localized gauge kinetic terms are present, the transition might be strong enough to give baryogenesis at the electroweak transition.Comment: 4 pages, 2 figures, contribution to the Proceedings of the Int. Europhysics Conf. on High Energy Physics (HEP2005), July 21-27 2005, Lisboa, Portuga

    Flavor hierarchies from dynamical scales

    Full text link
    One main obstacle for any beyond the SM (BSM) scenario solving the hierarchy problem is its potentially large contributions to electric dipole moments. An elegant way to avoid this problem is to have the light SM fermions couple to the BSM sector only through bilinears, fˉf\bar ff. This possibility can be neatly implemented in composite Higgs models. We study the implications of dynamically generating the fermion Yukawa couplings at different scales, relating larger scales to lighter SM fermions. We show that all flavor and CP-violating constraints can be easily accommodated for a BSM scale of few TeV, without requiring any extra symmetry. Contributions to B physics are mainly mediated by the top, giving a predictive pattern of deviations in ΔF=2\Delta F=2 and ΔF=1\Delta F=1 flavor observables that could be seen in future experiments.Comment: 25 pages, 5 figures; v2: corrections in some estimate

    On the Interpretation of Top Partners Searches

    Full text link
    Relatively light Top Partners are unmistakable signatures of reasonably Natural Composite Higgs models and as such they are worth searching for at the LHC. Their phenomenology is characterized by a certain amount of model-dependence, which makes the interpretation of Top Partner experimental searches not completely straightforward especially if one is willing to take also single production into account. We describe a model-independent strategy by which the interpretation is provided on the parameter space of a Simplified Model that captures the relevant features of all the explicit constructions. The Simplified Model limits are easy to interpret within explicit models, in a way that requires no recasting and no knowledge of the experimental details of the analyses. We illustrate the method by concrete examples, among which the searches for a charge 5/3 Partner in same-sign dileptons and the searches for a charge 2/3 singlet. In each case we perform a theory recasting of the available 8 TeV Run-1 results and an estimate of the 13 TeV Run-2 reach, also including the effect of single production for which dedicated experimental analyses are not yet available. A rough assessment of the reach of a hypothetical 100 TeV collider is also provided

    Resonant diphoton phenomenology simplified

    Get PDF
    open3noA framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results. We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J ≄ 2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonant diphoton production.openPanico, Giuliano; Vecchi, Luca; Wulzer, AndreaPanico, Giuliano; Vecchi, Luca; Wulzer, Andre

    Top Partners Searches and Composite Higgs Models

    Get PDF
    Colored fermionic partners of the top quark are well-known signatures of the Composite Higgs scenario and for this reason they have been and will be subject of an intensive experimental study at the LHC. Performing an assessment of the theoretical implications of this experimental effort is the goal of the present paper. We proceed by analyzing a set of simple benchmark models, characterized by simple two-dimensional parameter spaces where the results of the searches are conveniently visualized and their impact quantified. We only draw exclusion contours, in the hypothesis of no signal, but of course our formalism could equally well be used to report discoveries in a theoretically useful format.Comment: 32 pages, 15 figure

    Probing light top partners with CP violation

    Get PDF
    We investigate CP-violating effects induced by light top partners in composite Higgs theories. We find that sizable contributions to the dipole moments of the light SM quarks and leptons are generically generated at the two-loop level through Barr-Zee-type diagrams. The present constraints on the electron and neutron electric dipole moments translate into bounds on top partner masses of order few TeV and are competitive with the reach of LHC direct searches. Interestingly, we find that CP-violation effects are sensitive to the same operators that control top partner single production. Near-future improvements in the determination of the electron dipole moment will extend the reach on top partner masses beyond the 5 - 10 TeV range.Comment: 31 pages, 10 figures; v2: typos corrected, matches published versio
    • 

    corecore