9 research outputs found

    Justified Concern or Exaggerated Fear: The Risk of Anaphylaxis in Percutaneous Treatment of Cystic Echinococcosis—A Systematic Literature Review

    Get PDF
    Percutaneous treatment (PT) emerged in the mid-1980s as an alternative to surgery for selected cases of abdominal cystic echinococcosis (CE). Despite its efficacy and widespread use, the puncture of echinococcal cysts is still far from being universally accepted. One of the main reasons for this reluctance is the perceived risk of anaphylaxis linked to PTs. To quantify the risk of anaphylactic reactions and lethal anaphylaxis with PT, we systematically searched MEDLINE for publications on PT of CE and reviewed the PT-related complications. After including 124 publications published between 1980 and 2010, we collected a total number of 5943 PT procedures on 5517 hepatic and non-hepatic echinococcal cysts. Overall, two cases of lethal anaphylaxis and 99 reversible anaphylactic reactions were reported. Lethal anaphylaxis occurred in 0.03% of PT procedures, corresponding to 0.04% of treated cysts, while reversible allergic reactions complicated 1.7% of PTs, corresponding to 1.8% of treated echinococcal cysts. Analysis of the literature shows that lethal anaphylaxis related to percutaneous treatment of CE is an extremely rare event and is observed no more frequently than drug-related anaphylactic side effects

    Comparative Evaluation of Different Chitosan Species and Derivatives as Candidate Biomaterials for Oxygen-Loaded Nanodroplet Formulations to Treat Chronic Wounds

    Get PDF
    Persistent hypoxia is a main clinical feature of chronic wounds. Intriguingly, oxygen-loaded nanodroplets (OLNDs), filled with oxygen-solving 2H,3H-decafluoropentane and shelled with polysaccharides, have been proposed as a promising tool to counteract hypoxia by releasing a clinically relevant oxygen amount in a time-sustained manner. Here, four different types of chitosan (low or medium weight (LW or MW), glycol-(G-), and methylglycol-(MG-) chitosan) were compared as candidate biopolymers for shell manufacturing. The aim of the work was to design OLND formulations with optimized physico-chemical characteristics, efficacy in oxygen release, and biocompatibility. All OLND formulations displayed spherical morphology, cationic surfaces, ≤500 nm diameters (with LW chitosan-shelled OLNDs being the smallest), high stability, good oxygen encapsulation efficiency, and prolonged oxygen release kinetics. Upon cellular internalization, LW, MW, and G-chitosan-shelled nanodroplets did not significantly affect the viability, health, or metabolic activity of human keratinocytes (HaCaT cell line). On the contrary, MG-chitosan-shelled nanodroplets showed very poor biocompatibility. Combining the physico-chemical and the biological results obtained, LW chitosan emerges as the best candidate biopolymer for future OLND application as a skin device to treat chronic wounds

    Antibacterial and Antifungal Efficacy of Medium and Low Weight Chitosan-Shelled Nanodroplets for the Treatment of Infected Chronic Wounds [* V. Allizond is the corresponding author; **A.M. Cuffini and G. Banche are co-last authors]

    Get PDF
    PURPOSE: Medium versus low weight (MW vs LW) chitosan-shelled oxygen-loaded nanodroplets (cOLNDs) and oxygen-free nanodroplets (cOFNDs) were comparatively challenged for biocompatibility on human keratinocytes, for antimicrobial activity against four common infectious agents of chronic wounds (CWs) – methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Candida albicans and C. glabrata – and for their physical interaction with cell walls/membranes. METHODS: cNDs were characterized for morphology and physico-chemical properties by microscopy and dynamic light scattering. In vitro oxygen release from cOLNDs was measured through an oximeter. ND biocompatibility and ability to promote wound healing in human normoxic/hypoxic skin cells were challenged by LDH and MTT assays using keratinocytes. ND antimicrobial activity was investigated by monitoring upon incubation with/without MW or LW cOLNDs/cOFNDs either bacteria or yeast growth over time. The mechanical interaction between NDs and microorganisms was also assessed by confocal microscopy. RESULTS: LW cNDs appeared less toxic to keratinocytes than MW cNDs. Based on cell counts, either MW or LW cOLNDs and cOFNDs displayed long-term antimicrobial efficacy against S. pyogenes, C. albicans, and C. glabrata (up to 24 h), whereas a short-term cytostatic effects against MRSA (up to 6 h) was revealed. The internalization of all ND formulations by all four microorganisms, already after 3 h of incubation, was showed, with the only exception to MW cOLNDs/cOFNDs that adhered to MRSA walls without being internalized even after 24 h. CONCLUSION: cNDs exerted bacteriostatic and fungistatic effects, due to the presence of chitosan in the outer shell and independently of oxygen addition in the inner core. The duration of such effects strictly depends on the characteristics of each microbial species, and not on the molecular weight of chitosan in ND shells. However, LW chitosan was better tolerated by human keratinocytes than MW. For these reasons, the use of LW NDs should be recommended in future research to assess cOLND efficacy for the treatment of infected CWs

    Antimicrobial oxygen-loaded nanobubbles as promising tools to promote wound healing in hypoxic human keratinocytes [*N. Mandras is the corresponding author, **A.M. Cuffini and M. Prato are co-last authors]

    Get PDF
    Chronic wounds (CWs) are typically characterized by persistent hypoxia, exacerbated inflammation, and impaired skin tissue remodeling. Additionally, CWs are often worsened by microbial infections. Oxygen-loaded nanobubbles (OLNBs), displaying a peculiar structure based on oxygen-solving perfluorocarbons such as perfluoropentane in the inner core and polysaccharydes including chitosan in the outer shell, have proven effective in delivering oxygen to hypoxic tissues. Antimicrobial properties have been largely reported for chitosan. In the present work chitosan/perfluoropentane OLNBs were challenged for biocompatibility with human skin cells and ability to promote wound healing processes, as well as for their antimicrobial properties against methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. After cellular internalization, OLNBs were not toxic to human keratinocytes (HaCaT), whereas oxygen-free NBs (OFNBs) slightly affected their viability. Hypoxia-dependent inhibition of keratinocyte migratory ability after scratch was fully reversed by OLNBs, but not OFNBs. Both OLNBs and OFNBs exerted chitosan-induced short-term bacteriostatic activity against MRSA (up to 6 h) and long-term fungistatic activity against C. albicans (up to 24 h). Short-term antibacterial activity associated with NB prolonged adhesion to MRSA cell wall (up to 24 h) while long-term antifungal activity followed NB early internalization by C. albicans (already after 3 h of incubation). Taken altogether, these data support chitosan-shelled and perfluoropentane-cored OLNB potential as innovative, promising, non-toxic, and cost-effective antimicrobial devices promoting repair processes to be used for treatment of MRSA- and C. albicans-infected CWs
    corecore