242 research outputs found

    Morphological Methods to Evaluate Peripheral Nerve Fiber Regeneration: A Comprehensive Review

    Get PDF
    Regeneration of damaged peripheral nerves remains one of the main challenges of neurosurgery and regenerative medicine, a nerve functionality is rarely restored, especially after severe injuries. Researchers are constantly looking for innovative strategies for tackling this problem, with the development of advanced tissue-engineered nerve conduits and new pharmacological and physical interventions, with the aim of improving patients’ life quality. Different evaluation methods can be used to study the effectiveness of a new treatment, including functional tests, morphological assessment of regenerated nerve fibers and biomolecular analyses of key factors necessary for good regeneration. The number and diversity of protocols and methods, as well as the availability of innovative technologies which are used to assess nerve regeneration after experimental interventions, often makes it difficult to compare results obtained in different labs. The purpose of the current review is to describe the main morphological approaches used to evaluate the degree of nerve fiber regeneration in terms of their usefulness and limitations

    The mouse median nerve experimental model in regenerative research

    Get PDF
    Sciatic nerve crush injury in rat animal model is one of the most common experimental models used in regenerative research. However, the availability of transgenic mouse for nerve regeneration studies is constantly increasing and, therefore, the shift from rat model to mouse model is, in some cases, necessary. Moreover, since most of the human nerve lesions occur in the upper limb, it is also advantageous to shift from sciatic nerve to median nerve. In this study we described an experimental model which involves lesions of the median nerve in the mouse. Data showed that the finger flexor muscle contraction strength, assessed to evaluate the motor function recovery, and reached values not different from the control already 20 days after injury. The degree of nerve regeneration evaluated with stereological methods in light microscopy showed that, 25 days after injury, the number of regenerated myelinated fibers was comparable to the control, but they were smaller with a thinner myelin thickness. Stereological analysis made in electron microscopy confirmed these results, although the total number of fibers quantified was significantly higher compared to light microscopy analysis, due to the very small size of some fibers that can be detected only in electron microscopy

    Effect of temperature increase during the tableting of pharmaceutical materials

    Get PDF
    Scale-up of tableting process is particularly difficult due to specific concerns related exclusively to the process itself and that cannot be determined on a smaller scale, which are the effect of compression speed and the build-up of heat due to the length of the compaction operations. In this work, it has been simulated the rise of temperature observed during the tablets manufacturing in a full production scale by means of an appropriate modification of a R&D rotary tablet machine. Four common pharmaceutical excipients, characterized by different chemical nature, consolidation behaviour and temperature sensitiveness have been analysed in terms of compaction mechanism (Heckel and energy analysis) and tabletability, in order to verify any effect of the increase of temperature. The results showed a relevance of the temperature on mechanical tablets properties only on materials characterized by low temperature thermal transitions (melting or glass transition), while, for compounds which do not exhibit thermal events at low temperature, it becomes less important for ductile materials and irrelevant for brittle materials. Heckel analysis highlighted a noticeable increase of ductility only in those materials whose tablets mechanical properties depended on the temperature. On the other hand, energy analysis showed low sensitivity failing to identify any temperature effect on compaction materials properties. This work showed how to simulate the process of temperature rise on a small scale and the influence of temperature on materials compaction properties. The use of a modified tableting machine, able to control the temperature and moisture levels and also capable of monitoring the punch movements, resulted in identifying the effect of temperature both on mechanical and compaction properties on materials. Thus, it represents a valuable tool in order to provide useful information at an early stage during the development of tablets formulations
    • …
    corecore