18 research outputs found
Centrality of Striatal Cholinergic Transmission in Basal Ganglia Function
Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction. Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson's disease and dystonia. Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders
Optogenetic Activation of Striatopallidal Neurons Reveals Altered HCN Gating in DYT1 Dystonia
Summary: Firing activity of external globus pallidus (GPe) is crucial for motor control and is severely perturbed in dystonia, a movement disorder characterized by involuntary, repetitive muscle contractions. Here, we show that GPe projection neurons exhibit a reduction of firing frequency and an irregular pattern in a DYT1 dystonia model. Optogenetic activation of the striatopallidal pathway fails to reset pacemaking activity of GPe neurons in mutant mice. Abnormal firing is paralleled by alterations in motor learning. We find that loss of dopamine D2 receptor-dependent inhibition causes increased GABA input at striatopallidal synapses, with subsequent downregulation of hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. Accordingly, enhancing in vivo HCN channel activity or blocking GABA release restores both the ability of striatopallidal inputs to pause ongoing GPe activity and motor coordination deficits. Our findings demonstrate an impaired striatopallidal connectivity, supporting the central role of GPe in motor control and, more importantly, identifying potential pharmacological targets for dystonia
Impaired dopamine- and adenosine-mediated signaling and plasticity in a novel rodent model for DYT25 dystonia
Abstract Dystonia is a neurological movement disorder characterized by sustained or intermittent involuntary muscle contractions. Loss-of-function mutations in the GNAL gene have been identified to be the cause of "isolated" dystonia DYT25. The GNAL gene encodes for the guanine nucleotide-binding protein G(olf) subunit alpha (Gαolf), which is mainly expressed in the olfactory bulb and the striatum and functions as a modulator during neurotransmission coupling with D1R and A2AR. Previously, heterozygous Gαolf -deficient mice (Gnal+/â) have been generated and showed a mild phenotype at basal condition. In contrast, homozygous deletion of Gnal in mice (Gnalâ/â) resulted in a significantly reduced survival rate. In this study, using the CRISPR-Cas9 system we generated and characterized heterozygous Gnal knockout rats (Gnal+/â) with a 13 base pair deletion in the first exon of the rat Gnal splicing variant 2, a major isoform in both human and rat striatum. Gnal+/â rats showed early-onset phenotypes associated with impaired dopamine transmission, including reduction in locomotor activity, deficits in rotarod performance and an abnormal motor skill learning ability. At cellular and molecular level, we found down-regulated Arc expression, increased cell surface distribution of AMPA receptors, and the loss of D2R-dependent corticostriatal long-term depression (LTD) in Gnal+/â rats. Based on the evidence that D2R activity is normally inhibited by adenosine A2ARs, co-localized on the same population of striatal neurons, we show that blockade of A2ARs restores physiological LTD. This animal model may be a valuable tool for investigating Gαolf function and finding a suitable treatment for dystonia associated with deficient dopamine transmission
Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson
Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntingtonâs chorea and Parkinsonâs disease are both neurodegenerative diseases, but while Huntingtonâs disease is genetic and progressive with early manifestation and severe penetrance, Parkinsonâs disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntingtonâs is defined as a hyperkinetic disorder, Parkinsonâs is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas
Chemometric Tools to Point Out Benchmarks and Chromophores in Pigments through Spectroscopic Data Analyses
Spectral preprocessing data and chemometric tools are analytical methods widely applied in several scientific contexts i.e., in archaeometric applications. A systematic classification of natural powdered pigments of organic and inorganic nature through Principal Component Analysis with a multi-instruments spectroscopic study is presented here. The methodology allows the access to elementary and molecular unique benchmarks to guide and speed up the identification of an unknown pigment and its recipe. This study is conducted on a set of 48 powdered pigments and tested on a real-case sample from the wall painting in S. Maria Delle Palate di Tusa (Messina, Italy). Four spectroscopic techniques (X-ray Fluorescence, Raman, Attenuated Total Reflectance and Total Reflectance Infrared Spectroscopies) and six different spectrometers are tested to evaluate the impact of different setups. The novelty of the work is to use a systematic approach on this initial dataset using the entire spectroscopic energy range without any windows selection to solve problems linked with the manipulation of large analytes/materials to find an indistinct property of one or more spectral bands opening new frontiers in the dataset spectroscopic analyses
On the mechanism of tumor cell entry of aloeâemodin, a natural compound endowed with anticancer activity
Aloe-emodin (1,8-dihydroxy-3-(hydroxymethyl)-anthraquinone), AE, is one of the active constituents of a number of plant species used in traditional medicine. We have previously identified, for the first time, AE as a new antitumor agent and shown that its selective in vitro and in vivo killing of neuroblastoma cells was promoted by a cell-specific drug uptake process. However, the molecular mechanism underlying the cell entry of AE has remained elusive as yet. In this report, we show that AE enters tumor cells via two of the five somatostatin receptors: SSTR2 and SSTR5. This observation was suggested by gene silencing, receptor competition, imaging and molecular modeling experiments. Furthermore, SSTR2 was expressed in all surgical neuroblastoma specimens we analyzed by immunohistochemistry. The above findings have strong implications for the clinical adoption of this natural anthraquinone molecule as an antitumor agent. This article is protected by copyright. All rights reserved
On The Mechanism Of Tumor Cell Entry Of Aloe-Emodin, A Natural Compound Endowed With Anticancer Activity
Aloe-emodin (1,8-dihydroxy-3-(hydroxymethyl)-anthraquinone), AE, is one of the active constituents of a number of plant species used in traditional medicine. We have previously identified, for the first time, AE as a new antitumor agent and shown that its selective in vitro and in vivo killing of neuroblastoma cells was promoted by a cell-specific drug uptake process. However, the molecular mechanism underlying the cell entry of AE has remained elusive as yet. In this report, we show that AE enters tumor cells via two of the five somatostatin receptors: SSTR2 and SSTR5. This observation was suggested by gene silencing, receptor competition, imaging and molecular modeling experiments. Furthermore, SSTR2 was expressed in all surgical neuroblastoma specimens we analyzed by immunohistochemistry. The above findings have strong implications for the clinical adoption of this natural anthraquinone molecule as an antitumor agent. This article is protected by copyright. All rights reserved